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Abstract

The positions of the two major parties in the United States on civil rights issues reversed

in the 20th century. The conventional wisdom views the reversal as a structural break in

the 1960s led by party elites, whereas recent work argues that the change occurred gradually

from the 1930s driven by local activists within both parties. To address this debate, we

develop a nonparametric Bayesian model that incorporates the hidden Markov model into the

Dirichlet process mixture model. In analyzing rank-and-file legislators’ behavior, we model

the emergence and disappearance of their latent voting blocks as a gradual process rather

than a one-time structural change, thereby identifying both steady and sudden changes of

voting coalitions. Our analysis shows that, in addition to gradual changes of party positions

beginning in the 1930s, Democrats and Republicans in southern States formed a voting

coalition from 1950s.
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1 Introduction

Gradual structural changes—changes that are obscure while they are happening, but that are

obvious after a few decades—often pose debates among social scientists. Since the process of

changes is not directly observable, researchers need to infer when the latent shift began and how

it evolved. Political scientists studying party politics in the United States are well aware that the

Democrats and the Republicans switched their policy positions on racial issues in the 20th century.

Today, the Democratic Party is the advocate for racial liberalism, whereas the Republican Party

is associated with racial conservatism. However, the party positions were the exact opposite in

the 1930s. The conventional wisdom (e.g., Garmines and Stimson, 1989; McAdam and Kloos,

2014; Edsall and Edsall, 1992; Califano, 1992) has viewed this change as a structural break,

whose high point was marked by civil rights legislation in the 1960s, driven by party elites in

Washington D.C. On the other hand, Schickler (2016) challenges this view by arguing that rank-

and-file legislators’ behavior began altering in the 1930s. These arguments attempt to identify the

timing and development of a latent change underlying observable actions in the Congress.

To empirically address this debate, we develop a dynamic model of gradual structural changes

that extends the Dirichlet process (DP) mixture model (Ferguson 1973; Antoniak 1974; see also Teh

2010). The DP mixture model (DPMM) is a nonparametric Bayesian model for clustering units

into latent groups. It places the DP prior on the mixing distribution of a mixture model, thereby

allowing the number of clusters to be estimated from data, instead of requiring it to be specified

ex ante. We extend the DPMM to a dynamic setting by modifying the standard DP prior to a

Markov process of the DP for cluster membership assignments over time. Similarly to the static

DP, this dynamic DP is closely connected to the Chinese restaurant process (CRP; Blackwell and

MacQueen 1973). We call it the intergenerational Chinese restaurant process (IgCRP), because

the cluster assignments in each time period follows the CRP conditional on the cluster assignments

of all units in the previous period. A distinctive feature of our model is that it models a process

in which multiple clusters emerge and diminish as a continuing process rather than a structural

break. At the same time, our model retains the popular feature of the DPMM that the number of

clusters does not need to be specified ex ante. Moreover, as is the case with the DPMM, a broad

class of models can be the mixture component of the dynamic DPMM, and therefore it is widely

applicable beyond our specific application to the party position switching on racial issues.

We analyze the evolution of party positions on civil rights issues in the U.S. House of Repre-

sentatives using the dynamic DPMM. The data set consists of various legislative actions measured

repeatedly for each House member from the 73rd to the 92nd Congress (1933–1973). Our analysis

builds on the voting block model of Spirling and Quinn (2010), which uses the DPMM to identify

latent clusters of legislators based on their voting behavior. However, our dynamic DPMM al-

lows us to make inference on gradual changes in the cluster memberships of legislators over time,

thereby answering the question of when and how the parties switched their positions on racial is-

sues. We find that the Democratic legislators from the North began moving toward pro-civil rights
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positions in the 1930s and that the southern Republicans formed an anti-civil rights coalition with

the southern Democrats in the 1950s. These findings are consistent with Schickler (2016), who

argue that the party position switching on racial issues began in the 1930s and that the nouthern

Democrats were the key players in the process.

Our extension of the DPMM is characterized by clusters shared across time and dependence

of cluster assignments on the previous period. The methodological challenge of our application is

to capture gradual changes in latent heterogeneity over time. We use a mixture model to account

for latent heterogeneity, which is common in political science research (Imai and Tingley, 2012;

Spirling and Quinn, 2010; Kyung et al., 2011). However, the change-point modeling approach,

which is also common to model temporal dynamics in social sciences (Park, 2010; Pang et al.,

2012; Kim et al., 2020) is not suitable due to its assumption that all units switch their status

simultaneously and hence latent clusters are not shared across time. We develop a new dynamic

DP prior that combines temporal dependence similar to Caron et al. (2012) and stickiness of a

dynamic DP introduced by Fox et al. (2011).

The remainder of the paper proceeds as follows. The next section introduces our motivating

empirical example, the racial switch of the Democratic Party and the Republican Party. Section

3 first describes the proposed model using the stick-breaking definition of the Dirichlet Process.

Then the section illustrates the intergenerational Chinese restaurant metaphor for the proposed

model, which provides the intuition on how latent clusters evolve over time. Section 4 presents

the empirical analysis of the motivating example, followed by concluding remarks.

2 Motivating Example and Data

2.1 The Racial Realignment, 1932-1965

Our motivating example is the shifting party coalitions for civil rights in the US from the 1930s to

the 1970s analyzed by Eric Schickler’s book of Racial Realignment: The Transformation of Amer-

ican Liberalism, 1932-1965 (Schickler, 2016). In his book, Schickler argues that the Democratic

and Republican parties’ positions on civil rights started changing in the 1930s, much earlier than

the conventional wisdom.

The two parties in the US switched their positions on racial issues in the 20th century. Today,

the Democratic Party is associated with racial liberalism, supporting government efforts to re-

dress racial inequality, while the Republican party is associated with racial conservatism, resisting

governmental interventions in racial issues. Before the 1930s, however, the two parties’ positions

on racial issues were the reverse. The Republican Party used to be more identified with African

Americans than the Democratic Party.

Scholars often view the reversal in the two parties’ positions as a sudden structural break that

occurred in the 1960s. According to this view, local Republicans were slightly more liberal on

racial issues than their Democratic counterparts in the 1940s and 1950s (Garmines and Stimson,

1989). Although northern Democrats had an incentive to support civil rights to seek support from
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African American as increasingly important voters, federalism prevented local politicians from

making commitment to programmatic liberalism (Weir, 2005). Instead, party elites in Washing-

ton, D.C. led the change (McAdam and Kloos, 2014; Edsall and Edsall, 1992). The “critical

juncture” arrived during the presidential election of 1964, when Democratic candidate Lyndon

B. Johnson and Republican candidate Barry Goldwater took sharply different positions on civil

rights issues (Califano, 1992). Local party activists then followed national leaders to change their

racial positions.

In contrast to the structural-break view of the reversal, Schickler (2016) makes a critical ob-

servation that the change of parties’ racial positions was a gradual process that started in the

mid-1930s. Rather than national party elites, locally oriented rank-and-file party members drove

the gradual change. Schickler’s view aligns with recent scholarship that challenges the traditional

insight of a sudden shift of the two parties’ positions on civil rights (Farhang and Katznelson, n.d.;

Chen et al., 2008).

Specifically, Schickler (2016) emphasizes that northern Democrats at the local level took the

lead in making the change.1 Local northern Democrats were gradually transformed by the New

Deal coalition with the Congress of Industrial Organizations (CIO), African Americans, and other

urban liberals. Initially, the New Deal coalition, which was made possible by the shared interests

of economic liberalism, had little to do with race. As Democrats’ nonpartisan allies increased

their civil rights advocacy, so were northern Democrats. While national party elites had a strong

interest in maintaining the solidarity of the party, pressures from local party activists forced

elites in Washington, D.C. to break the traditional North-South coalition. At the same time, the

Republican party, which used to be more supportive of civil rights, was gradually divided over

racial issues, as the demand for pursuing civil rights in some of its constituencies waned.

2.2 Data

Schickler (2016) provides rich data to assess his argument, including historical survey data to

trace the configuration of economic and racial liberalism at the macro level, data of state party

platforms to understand how state Democratic and Republican parties positioned themselves on

civil rights, and data concerning congressional action on civil rights to measure House members’

positions on racial issues. In this paper, we reanalyze the congressional data to understand how

House members made coalitions across states and party lines, and how the coalitions changed

gradually over the years.

The data of congressional action includes roll-call votes, signing discharge petitions to advance

civil rights bills, floor speech, as well as bill sponsorship.2 Summary statistics of the data are

shown in Supplementary Information (SI) A.

1Following Schickler (2016), we define “southern” states or the “South” as the 11 Confederate states plus
Kentucky and Oklahoma. “Northern” states or the “North” refers to all other states.

2Roll-call votes are most commonly used to measure members’ preferences. However, Schickler points out that
roll calls could be a misleading measure. Only a very small portion of civil rights bills reached the floor. Most civil
rights bills were blocked by the House Rules Committee, which was dominated by southern senior Democrats.
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Roll-call Votes. Following the original work of Schickler (2016), we use a dummy variable to

indicate whether a House member supported a civil rights bill or not. “1” means that a member

voted “yes” for a bill, and “0” indicates that the member either voted “no” or was absent. In

Table A.1, we list the number of roll calls about civil rights from the 73rd Congresses (1933-35)

to the 92nd Congress (1971-73). It shows that during the period of this study, not every Congress

had roll calls of civil rights issues. The table also presents the means and standard deviations

of the roll-call variable by parties and years. The standard deviations are as large as the means,

meaning the within-party heterogeneity is high.

Discharge Petition Signatures. If a legislative committee or the Rules Committee has

blocked a bill from reaching the floor for a long time, House members can sign a petition to ask

for advancing the bill.3 We use a dummy variable to measure whether a member signed a certain

petition. Table A.1 shows the number of petitions in each Congress. It also shows the means

and standard deviations of the petition variable by parties and by years. On average, a Congress

member was less likely to sign a petition than to vote “yes” for a civil rights bill. Schickler

explained that signing a discharge petition is costly for members of Congress, as it is a sign of

violating “congressional norms” and intruding on “committee authority”. Only members who

“cared enough” about a civil rights issue would sign a petition (p183). Hence, discharge petition

signatures serve as a good measure of the intensity of a member’s preference.

Floor Speeches. We use a dummy variable to indicate whether a House member delivered at

least one speech on the floor to support civil rights in a certain Congress. Floor speeches serve as

an important way for House members to signal commitments to their constituents. Competition

for speech time is fierce on the floor. Using precious time to deliver a speech to support civil

rights indicates that a civil rights issue is one of the member’s top priorities. Table A.1 shows

that the speech variable varies a lot over time. For instance, while in the 73rd Congress (1933-35),

only about 2.5% members spoke about civil rights, in the 89th Congress (1965-67), about 22.5%

Democrats and 16.1% Republicans delivered speeches supporting civil rights issues.

Bill Sponsorship. Bill Sponsorship is a count variable measuring how many civil rights

bills a member initialized in a certain Congress. On average, one member sponsored less than 1

civil rights bill. The variation is large, as some members initialized many bills while most other

members didn’t initialize any civil rights bills.

2.3 Limitations of the Original Analaysis

In the Book, through analyzing the four types of data, Schickler finds that ever since the 1930s,

more and more northern Democrats became advocates of civil rights. While at the beginning of the

1930s, northern Republicans were a bit more supportive of civil rights than northern Democrats,

over the years, northern Democrats became more liberal while northern Republicans became more

conservative. Since the 1940s, the average differences between the two parties’ positions became

3For a bill in a legislative committee, the waiting period is 20 days; for a bill in the Rules Committee, the
waiting period is 7 days Schickler et al. (2010, p. 676).
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larger and larger.4

Insightful as Schickler’s findings are, the average difference between the two parties’ positions

reveals limited information on how old racial coalitions dissolved and new coalitions emerged.

As “shifting partisan coalitions” played a central role in the transformation of racial politics, it

is important to know how congressional members in different states and parties made coalitions

with each other, and how their coalitions changed. For instance, in what states did congressional

Democrats first join the new racial coalition? Democrats of what states were late joiners? Within

a state, when did congressional Democrats and Republicans act together? When did they start

to take opposite positions?

Also, the average racial position of a party says little about the distribution of racial positions

within the party. Schickler (2016, p. 187) admits that “these findings still leave open the question of

which northern Democrats and Republicans were particularly likely to back civil rights initiatives.”

As racial realignment is a gradual procedure that initialized by locally oriented rank-and-file

members, it is necessary to understand how members in individual states changed their positions

over the years.

The proposed methodology provides an analytical tool to solve the questions listed above. We

regard House members of a party in one state as the unit of analysis. By categorizing the party-

state units into different groups and analyzing how the group membership changes dynamically

over time, we can trace the gradual shift of racial coalitions as well as the gradual changes of party

positions of individual states.

3 Model and Inference

3.1 The Model

The proposed dynamic DP model is a nonparametric and dynamic Bayesian clustering model. As

is the DPMM, the dynamic DP model is a model for the latent group membership of observations

and nonparametric in the sense that the number of latent clusters is not specified a priori. However,

while the DPMM clusters cross-sectional units, the dynamic DP model is a model in which units

move across groups over time. It is a dynamic model since the group membership of each unit

changes over time, and the temporal shift of the membership is modeled as a Markov process. In

each time period, a unit remains in the same group as the previous period or moves to a different

group. If the unit moves, the group to which it is switching is determined by the Dirichlet process

conditional on the group memberships in the previous period. Therefore, the proposed model is

considered as a dynamic extension of DP.

To formally describe the model, let i ∈ {1, . . . , N} denote a unit and t ∈ {1, . . . , T} denote

a time period in a panel data set. Also, let Yit be observed (possibly multivariate) measurement

4The major findings of analyzing congressional data is in Chapter 8. Schickler also shows the results of analyzing
the same four types of data in a earlier paper coauthored with Kathryn Pearson and Brain D. Feinstein (Schickler
et al., 2010).
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for unit i in time t. It is assumed that unit i in time t belongs to a latent group g[it], where

g[it] ∈ {1, 2, . . . } denotes the latent group index of unit i in time t, and that Yit is generated from

a probabilistic model f with parameter Θg[it]:

Yit ∼ f
(
Θg[it]

)
. (1)

That is, Yit and Yi′t′ share a common DGP if g[it] = g[i′t′], but they may follow different DGPs

otherwise. An appropriate prior distributions are placed on the model parameters Θ. A simple

example of f is the Gaussian regression model with group-specific parameters:

Yit
indep.∼ N

(
X⊤

itβg[it], σ
2
g[it]

)
In this example, Θg = (βg, σg) and the parameters vary across latent groups. Thus, this regression

model accounts for unobserved heterogeneity of the data generating process.

The dynamic DP models the generative process of group assignment, g[it], in the generic

data model defined in equation (1). First, the group membership in the initial period (t = 1)

is generated by DP. Using the stick-breaking construction (Sethuraman, 1994), the generative

process of g[i1], i = 1, . . . , N, is hierarchically defined as:

g[i1]
i.i.d.∼ Discrete({qk}∞k=1) (2)

qk = πk

k−1∏
l=1

(1− πl) (3)

πk
i.i.d.∼ Beta(1, γ) (4)

where γ is the concentration parameter of the DP.

The key innovation of the proposed dynamic DP model is the dynamic generative process of

latent groups for periods t = 2, . . . , T . Specifically, g[it] follows a Markov process conditional on

(g[1, t − 1], . . . , g[N, t − 1]). On one hand, similar to the sticky HDP-HMM model (Fox et al.,

2011), unit i in time t stays in the same group as it was in time t−1 with probability p. Formally,

Pr (g[it] = g[i, t− 1] | g[i, t− 1]) = p (5)

where

p ∼ Beta(αp, βp). (6)

On the other hand, with probability 1−p, unit i’s group in time t follows the Dirichlet process,
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but conditional on the cluster assignments in t− 1. That is,

g[it]
i.i.d.∼ Discrete({qtk}∞k=1) (7)

qtk = πt
k

k−1∏
l=1

(1− πt
l ) (8)

πt
k ∼ Beta(1 + nt−1

k , γ +N −
k∑

l=1

nt−1
l ) (9)

where nt−1
k is the number of units in latent cluster k in period t− 1.

3.2 Intergenerational Chinese Restaurant Metaphor

The generative process for the latent groups is intuitively illustrated by the Chinese restaurant

representation (Blackwell and MacQueen, 1973) of the Dirichlet process. The Dirichlet process

is known to be equivalent to two constructive representation: The stick-breaking process and

the Chinese restaurant process. The model described above is built on the former, because it

is mathematically simpler. However, the Chinese restaurant representation provides far more

intuitive illustration of the identical generative process. The name of the proposed model, the

intergenerational Chinese restaurant process, comes from this representation.

Figure 1 illustrates the Chinese restraurant representation of the generative process in t = 1.

In this representation, units are assigned to latent groups sequentially. At the beginning, unit

1 is (arbitrarily) assigned to group 1. For each subsequent unit, the probability that the unit

assigned to a group is proportional to the number of the units already assigned to that group,

and the probability that a unit creates a new cluster is proportional to prior parameter γ. For

example, unit 2 goes to group 1 with probability 1/(1+γ) or creates a new cluster (cluster 2) with

probability γ/(1 + γ) (the top panel of Figure 1). If, unit 2 is assigned to group 2 in the realized

state, the next unit (unit 3) is assigned to group 1 or 2 with probability 1/(2+ γ), or forms a new

group (group 3) with probabilty γ/(2+γ) (the middle panel of Figure 1). Furthermore, given that

unit 1 is assigned to group 1 and units 2 and 3 are assigned to group 2, unit 4 is assigned to group

1 with probability 1/(3 + γ), group 2 with probability 2/(3 + γ), and group 3 with probability

γ/(3 + γ), respectively (the bottom panel of Figure 1). This process is equivalent to the model

defined by equations (2) through (4) for latent groups in t = 1.

The dynamic process in the proposed model defined by equations (5) through (9) has analogous

interpretation. Figure 2 illustrates the generative process of latent groups in t = 2. This process is

the Chinese restaurant process given the group assignments in t = 1 with some stickiness added.

The top panel of Figure 2 illustrates the group assignment of the first unit in period 2. Here,

only for the purpose of illustration, it is assumed that two units are in group 1 and the other two

units are in group 2 in period 1. In period 2, unit 1 has some stickiness to group 1, because it is in

group 1 in the previous period. This stickiness is represented by probability parameter p. However,
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k = 1 k = 2

it=1 = 1

it=1 = 2

1
1+γ

γ
1+γ

k = 1 k = 2 k = 3

it=1 = 1

it=1 = 2

it=1 = 3

1
2+γ

1
2+γ

γ
2+γ

k = 1 k = 2 k = 3

it=1 = 1

it=1 = 2 it=1 = 3

it=1 = 4

1
3+γ

2
3+γ

γ
3+γ

Figure 1: Chinese Restaurant Process. This figure illustrates the generative process of the latent
cluster membership in t = 1. The fractions near arrows are the probabilities of cluster assignment.
The top, the middle and the bottom panel show the probability that unit 2, 3, and 4 are assigned
to each cluster, respectively. The probability that a unit assigned to a cluster is proportional to
the number of previously assigned units, and the probability that a unit creates a new cluster is
proportional to parameter γ.

to model possible change in group assignment for unit 1, unit 1 enters the Chinese restaurant

process given group assignments in period 1 with probability 1 − p. This Chinese restaurant

process works as follows: the probability of unit 1 being assigned to group k is proportional to the

number of the units assigned to group k in period 1. For example, the probability that unit 1 will

be assigned to group 2 is (1− p)× 2/(4+ γ), because unit 1 enters the Chinese restaurant process

with probability 1− p and if it does, it will be assigned to group 2 with probability proportional

to 2, which is the number of the units assigned to group 2 in period 1. On the other hand, unit 1

may still stay in group 1 even if it enters the Chinese restaurant process. The probability of that

happening is (1−p)×2/(4+γ), because it follows the Chinese restaurant process with probability
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k = 1 k = 2 k = 3

it=1 = 1

it=1 = 2 it=1 = 3

it=1 = 4

it=2 = 1

it=1 = 1

p+ (1−p)×2
4+γ

(1−p)×2
4+γ

(1−p)×γ
4+γ

k = 1 k = 2 k = 3

it=1 = 1

it=1 = 2 it=1 = 3

it=1 = 4
it=2 = 1

(1−p)×2
5+γ

p+ (1−p)×3
5+γ

(1−p)×γ
5+γ

it=2 = 2

it=1 = 2

Figure 2: Intergenerational Chinese Restaurant Process. This figure illustrates the generative
process of the latent cluster membership in t = 2. The fractions near arrows are the probabilities
of cluster assignment. The top and bottom panels present the probability that unit 1 and 2
in period 2 are assigned to each cluster, respectively. The probability that a unit assigned to a
cluster depends on cluster assignments in t = 1 and units already assigned to clusters in t = 2. The
probability is proportional to 1− p times the number of units in t = 1 and 2, and the probability
that a unit creates a new cluster is proportional to 1 − p times parameter γ. In addition, there
is stickiness that stickiness parameter p is added to the probability that a unit is assigned to the
cluster it occupied in t = 1.

1 − p and the conditional probability of group 1 is proportional to 2, which is the number of

the units in group 1 in period 1. Since unit 1 is sticky to group 1 with probability p, the total

probability of unit 1 being assigned to group 1 is p+ (1− p)2/(4 + γ).

The group assignment of the other units again follows the Chinese restaurant process con-

ditional on the period 1 group assignment, with stickiness parameter p. The bottom panel of

Figure 2 illustrates the group assignment of unit 2 in period 2, assuming that unit 1’s assignment

in period 2 is group 2. Again, unit 2 is sticky to the cluster to which the same unit was assigned

in period 1. Therefore, the probability that unit 2 goes to cluster 2 is p plus the probability

determined by the Chinese restaurant process. The difference from the case of unit 1 is that the

Chinese restaurant process for unit 2 involves unit 1 in period 2. That is, the probability that

unit 2 is assigned to cluster 2 should be p+(1− p)× 3/(5+ γ), because two units in period 1 and

unit 1 in period 2 are assigned to cluster 2.
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The probability of each of the other groups is simply determined by the number of units in that

group. Since group 1 has two units from period 1, the conditional probability that unit 2 belongs

to group 1 is 2/(5 + γ). On the other hand, the conditional probability of a new group formation

(group 3 in the figure) is γ/(5 + γ). The marginal probabilities are obtained by multiplying the

conditional probability by 1−p, the probability that the unit enters the Chinese restaurant process.

3.3 Related Models

Among other dynamic DP models, the proposed dynamic DP model is most closely related to

Caron et al. (2012). However, equation (9) is different in that cluster assignment in t depends on

the assignments of all units in t− 1, instead of the units whose assignments are not deleted in t.

Hence, our model makes stronger temporal dependence between generations, because in case of

p = 0 where there is no stickiness, the group assignment in t is still influenced by the assignment

in t− 1 in our model whereas it is not in Caron et al. (2012). In the CRP metaphor, units in t in

our model enter the restaurant with tables occupied by units in t− 1, but in Caron et al. (2012),

they enter an empty restaurant.

Iorio et al. (2023) develops another dynamic DP, in which π’s in Equation (8) follow an au-

toregressive process. In their model, the cluster assignment does not depend on the assignment

in the previous period. In addition, the cluster specific parameters are not shared across time. In

Huang et al. (2015), units stay in the same cluster for the entire life. They join a cluster and leave

from the data set after a certain length of time.

The time-sensitive Dirichlet process mixture model developed by Zhu et al. (2005) does not

have a stickiness parameter. Dunson (2006); Ren et al. (2010); Zhang et al. (2010); Das et al.

(2021) are also a dynamic DP without stickiness. Their dynamics is as follows: DP in period t is

a mixture of the DP in t− 1 and an entirely new DP (units in t go into the same CRP as t− 1 or

a brand-new CRP).

3.4 Markov Chain Monte Carlo Algorithm for Estimation

In this part, we introduce the Markov Chain Monte Carlo (MCMC) algorithm to estimate the

model constructed through the dynamic stick-breaking process. In general, we use the blocked

Gibbs sampling algorithm. It includes two major steps. One step is to sample the group-specific

parameter Θg that defines the data generating function f(Θk) for k = 1, 2, ..., conditioned on

the current group assignment g[it] = k. Sampling Θk from its posterior distribution is simple

when the prior distribution for Θk is conjugate. The second step is to sample group assignments

g[it] for i = 1, 2, ..., N and t = 1, 2, ..., T conditioned on Θk for k = 1, 2, .... Sampling g[it] is

relatively complicated, as the posterior distribution is conditioned on both cross-sectional and

cross-time relationships with other units. We combine the forward-backward algorithm designed

for change-point models (Chib, 1998) and the truncation approximation approach developed for

stick-breaking priors (Ishwaran and James, 2001) to sample g[it]. In what follows, we describe the

details for this MCMC algorithm.
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Following the truncation approximation approach of Ishwaran and James (2001), at the be-

ginning of the algorithm, we set an arbitrarily large number K at which we truncate the number

of groups. In the posterior distributions of g[it] for all i = 1, 2, ..., N and t = 1, 2, ..., T , the

probabilities for most groups will be zero. In this way, the model estimates the number of groups

automatically.

With K set, we initialize the starting values of g[it] for all i = 1, ..., N and t = 1, ..., T . Then,

each iteration of the Gibbs sampler proceeds as follows.

First, we update Θk for k = 1, 2, ..., K. The posterior distribution of Θk is only conditioned on

Xit and Yit for units in group k. The sampling algorithm for Θk is specific to the form of function

f(Θg[it]). If possible, set the prior for Θk a conjugate prior to make the sampling simple.

Second, we sample p, the probability that a unit stays in the same group as before and does

not go through a new round of group assigning process. To make the sampling of p simpler, we

first introduce a series of intervening dummy variables dit for i = 1, 2, ..., N and t = 1, 2, 3, ...T to

indicate whether a specific unit direly stays in the same group as before. The posterior distribution

of dit is only conditioned on g[it], g[i, t − 1], and p. When g[it] ̸= g[i, t − 1], dit must be 0; when

g[it] = g[i, t− 1], unit i may directly stays in the same group as before, or may be assigned to the

same group through the new round of group assigning process. Specifically,

p(dit = 1) =

{
0 if g[it] ̸= g[i, t− 1];

p
p+(1−p)qtk

if g[it] = g[i, t− 1] = k.

As we set the prior distribution for p a Beta distribution, conditioned on dit for all i = 1, 2, ..., N

and t = 1, 2, ..., T , the posterior distribution of p is also a Beta distribution. Specifically, we sample

p as follows:

p ∼ Beta(αp +N1, βp +N2)

N1 =
N∑
i=1

T∑
t=2

dit

N2 =
N∑
i=1

T∑
t=2

(1− dit)

Third, we update the stick-breaking weight πt
k and qtk for k = 1, 2, ...K and t = 1, 2, ..., T . As

we set K to be an arbitrarily large number to approximate the stick-breaking prior with infinite

number of groups, the posterior distribution of πt
k simply becomes a Beta distribution:

πt
k ∼ Beta(1 + nt−1

k + nt
k, γ +

K∑
l=k+1

nt−1
l +

K∑
l=k+1

nt
l)

nt−1
k =

N∑
i=1

I(g[i, t− 1] = k)

11



nt
k =

N∑
i=1

(1− dit)I(g[it] = k)

Once πt
k is updated, calculate qtk:

qtk = πt
k

k−1∏
l=1

(1− πt
l )

The last step is to sample group assignments g[it] for i = 1, 2, ..., N and t = 1, 2, ..., T . Let

g[t] ≡ (g[1t], g[2t], ..., g[Nt])′, qt ≡ (qt1, q
t
2, ..., q

t
K)

′, Yt ≡ (Y1t, Y2t, ..., YNt)
′. Following Chib (1998),

we sample g[T ],g[T − 2], ...,g[1] in turn:

Pr(g[it] = k|g[T ], ...,g[t+ 1], p,qT , ...,q1,YT , ...,Y1,Θ1, ...,ΘK) (10)

∝Pr(g[i, t+ 1]|p, g[it] = k,qt+1)︸ ︷︷ ︸
part 1

Pr(g[it] = k|p,qt, ...,q1,Yt, ...,Y1,Θ1, ...,ΘK)︸ ︷︷ ︸
part 2

(11)

The equation above shows a decomposition of the conditional posterior distribution of g[it] given

the observed data, the model parameters, and group assignments for period t+1 through T . Part

1 is the probability of g[i, t+ 1] given that g[i, t] is in group k. Then part 1 is :

Pr(g[i, t+ 1] = l|p, g[it] = k, qt+1
l ) = (1− p)qt+1

l + pI(l = k)

Part 2 is the conditional probability of g[it] = k given the model parameters and the data from

period 1 up to period t. Part 2 can be further decomposed as:

Pr(g[it] = k|p,qt, ...,q1,Yt, ...,Y1,Θ1, ...,ΘK))

∝ f(Yit|g[it] = k,Yt−1, ...,Y1,Θ1, ...,ΘK)︸ ︷︷ ︸
part a

Pr(g[it] = k|p,qt, ...,q1,Yt−1, ...,Y1,Θ1, ...,ΘK)︸ ︷︷ ︸
part b

Part a is the distribution of outcome variable Yit conditioned on contemporary group as-

signment g[it], outcome variables of former periods, and group-specific parameters Θk for k =

1, 2, ..., K. Given the group assignment g[it] = k and parameter for the group Θk, the distribution

of Θk is conditionally independent of the data in the other periods:

f(Yit|g[it] = k,Yt−1, ...,Y1,Θ1, ...,ΘK) = f(Yit|Θk)

Compared to the conditional distribution of g[it] in Part 2, in Part b g[it] is no longer conditioned

on Yt. Part b can be further decomposed as:

Pr(g[it] = k|p,qt, ...,q1,Yt−1, ...,Y1,Θ1, ...,ΘK)

=
∑
l

Pr(g[it] = k|p, qtk, g[i, t− 1] = l)︸ ︷︷ ︸
part c

Pr(g[i, t− 1] = l|p,qt−1, ...,q1,Yt−1, ...,Y1,Θ1, ...,ΘK)︸ ︷︷ ︸
part d
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Now one can immediately observe the recursive structure between the equation above and part

1 and part 2 in equation (11). Therefore, the standard forward recursion algorithm computes

the conditional posterior given by equation (10), and the backward sampling algorithm generates

MCMC draws from the conditional posterior of the group assignment.

4 Empirical Application

In this section, we apply the proposed methodology to study shifting party coalitions on civil

rights. First, we introduce the four measures of civil rights positions Schickler (2016) uses. Then,

we explain how to apply the dynamic DP model to the empirical example. We introduce the

specific statistical model that we use to analyze the data of civil rights positions. After this,

we show the results of statistical analysis. Besides confirming Schickler’s original argument that

racial realignment was a gradual procedure that started ever since the New Deal period, the new

results provide more information on how old coalitions dissolved and new coalitions emerged. The

new results also provide inference on how positions of congressional members in individual states

changed over the years.

4.1 Statistical Model for Analyzing Racial Realignment

Here we introduce the specific statistical model we use to analyze the data of congressional action.

We regard a party’s House members in one state as the basic unit of analysis, assuming members

from the same state and in the same party share the same constraint imposed by their constituen-

cies. We use the IgCRP model along with the voting block model of Spirling and Quinn (2010)

as the data model, to group party-state units and to model the evolvement of group memberships

over the years. Party-state units in the same group share the group-specific parameters that we

use to model the four types of legislative behaviors. In this way, we analyze the four types of data

measuring House members’ civil rights positions in a unified framework.

Specifically, let t = 73, 74, ..., 92 index the 73rd Congress (1933-35) to the 92nd Congress

(1971-73), s = 1, 2, ..., 50 index 50 states, and D and R represent the Democratic Party and

the Republican Party respectively. Let i = 1, 2, ..., IDst (or I
R
st) represent a Democratic/Republican

House member from state s in the tth Congress, and j = 1, 2, ..., JV
t /J

P
t index a civil rights vote

or petition in the tth Congress.

Let gD[st] represent the group the Democratic Party of state s in the tth Congress belongs to.

Similarly, gR[st] represents the group of the Republican party. We assume gD[st] and gR[st] share

the same IgCRP prior:

gD, gR∼IgCRP(γ, αp, βp)

Roll-call Votes. Let V D
istj represent the outcome of roll-call vote j in the tth Congress for

Democratic member i from state s. Similarly, V R
istj represents the roll-call vote of a Republican
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member. We assume V D
istj and V R

istj follow the following distributions:

V D
istj

ind.∼ Bernoulli(θgD[st])

V R
istj

ind.∼ Bernoulli(θgR[st])

For gD[st] = 1, 2, ..., k... and gR[st] = 1, 2, ..., k...,

θk ∼ Beta(αθ, βθ)

Discharge Petition Signatures. Let PD
istj and PR

istj represent whether member i from state

s signed petition j in the tth Congress. D and R index Democrats and Republicans. We assume

PD
istj and PR

istj follow the following distributions:

PD
istj

ind.∼ Bernoulli(ηgD[st])

PR
istj

ind.∼ Bernoulli(ηgR[st])

For gD[st] = 1, 2, ..., k... and gR[st] = 1, 2, ..., k...,

ηk ∼ Beta(αη, βη)

Floor Speeches. Let SD
ist and SR

ist represent whether Democratic or Republican member i

from state s delivered at least one floor speech to support civil rights. Their distributions are:

SD
ist

ind.∼ Bernoulli(ωgD[st])

SR
ist

ind.∼ Bernoulli(ωgR[st])

For gD[st] = 1, 2, ..., k... and gR[st] = 1, 2, ..., k...,

ωk ∼ Beta(αω, βω)

Bill Sponsorship. Finally, let BD
ist and BR

ist represent the number of civil rights bills member

i from state s sponsored in the tthe Congress. BD
ist and BR

ist follow the following distributions:

BD
ist

ind.∼ Poisson(λgD[st])

BR
ist

ind.∼ Poisson(λgR[st])

For gD[st] = 1, 2, ..., k... and gR[st] = 1, 2, ..., k...,

λk ∼ Gamma(aλ, bλ)
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4.2 MCMC Algorithm

As introduced in Section 3.4, the MCMC algorithm includes two major steps. One step is to

sample the group-specific parameters, here θk, ηk, ωk, and λk, for k = 1, 2, ..., conditioned on

group assignments gD[st] and gR[st] for s = 1, 2, ..., 50 and t = 73, 74, ..., 92. We set priors

for the group-specific parameters conjugate priors. Conditioned on group assignments, posterior

distributions of θk, ηk, ωk are Beta distributions, and the posterior distribution of λk is a Gamma

distribution. The second step is to sample group assignments gD[st] and gR[st] for s = 1, 2, ..., 50

and t = 73, 74, ..., 92, conditioned on the group-specific parameters. We combine the forward-

backward approach for change-point models and the truncation approximation approach for stick-

breaking priors to sample group assignments. Details of the algorithm are shown in SI B.

4.3 Empirical Results

In this part, we first check whether our results are consistent with the original findings of Schickler

(2016). Beyond this, we present the changes of the two parties’ positions in individual states,

cross-party coalition within a state, as well as cross-state coalition within a party.

Differences Across Parties. We use posterior means of outcome variables, {θgD[st], θgR[st]},
{ηgD[st], ηgR[st]}, {ωgD[st], ωgR[st]}, {λgD[st], λgR[st]} to measure a party’s position in state s and the tth

Congress. The posterior mean carries easily-interpreted empirical meaning. For instance, θgD[st]

means the probability that in the tth Congress a Democratic member from state s would vote

“yes” for a civil rights roll call; λgD[st] means the average number of civil rights bill Democratic

members in state s sponsored in the tth Congress.

Then we investigate how the difference between the two parties’ positions changed over time.

To compare our results with the original findings, We take the average of northern states and

southern states separately to check whether the two parties’ positions had started to diverge

longer before the 1960s in the North.

We present the results in Figure 3. Consistent with the original findings, we find that ever

since the 1940s, on average, northern Democrats were more supportive of civil rights than northern

Republicans, and the gap of the two parties in the North kept increasing until the 1960s. Blue solid

lines in each panel take positive values on the y-axis, which indicates that northern Democrats

are more supportive of civil rights than Republicans from the same states. While the Democratic

Party was only moderately different from the Republican Party in terms of roll call votes, for all

the other three measures, the gaps were substantially large.

The results also automatically capture the well-known situation in the South that southern

Democrats stood firmly against civil rights legislation. In the 1930s, the average differences be-

tween Democrats and Republicans in the South were negative. However, since the 1940s, the

partisan gap decreased gradually, and by the end of the 1950s, the differences became near 0.

This change was partly driven by the shift of southern Republicans’ positions and partly driven

by the gradually dissolved Democratic coalition in the South. We will further explore this change
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Figure 3: Differences between the Democratic Party and the Republican Party on Civil Rights
Position in Each Congress. A positive value in the y-axis indicates that Democrats are more
supportive of civil rights. Each point represents the posterior mean of an outcome variable in the
corresponding state and Congress. The solid and dotted lines represent averages of northern and
southern states respectively.

in the following analysis.

Beyond the average differences between Democrats and Republicans, our model also reveals

how the partisan differences in individual states evolved over time. Figure 3 shows that even

viewed from the perspective of roll-call votes, a measure only moderately captures the two parties’

difference, the pattern of partisan differences started to change in northern states. In the 1930s,
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Group in Supporting Civil Rights in Each Congress. Each point represents the probability of an
individual state. The solid and dotted lines represent averages of northern and southern states
respectively.

there were many northern states where Republicans were more supportive of civil rights than

Democrats. Representative states were Missouri, Nebraska, and Oregon.5 In the 1940s, the

number of such states decreased gradually. By the end of the 1940s, in few states the partisan

differences were negative. The proposed methodology also helps identify states where Democrats

pioneered in advancing civil rights. New York, California, and Illinois are such states.

Cross-party Coalitions within a State. Besides posterior means of outcome variables, we

also use the probability that the Democratic Party and the Republican Party are in the same

group to measure how the two parties differed in each state and each Congress. In addition, we

calculate the average probabilities of northern and southern states separately.

As shown in Figure 4, the average probability of northern states declines fast in the 1940s.

Before, in some northern states such as Connecticut and New Jersey, the probabilities are as high

as 0.7 to 0.8, meaning the Democrats and Republicans took very similar positions on civil rights

issues. Since the 1950s, in nearly all northern states the probabilities are below 0.5. In many

5Note that the “North” is defined all the non-South states. See footnote 1
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Figure 5: Probabilities that a Party in Two Different States are in the Same Groups in Each
Congress. Light lines represent the probabilities of two specific states. Thick lines represent
average probabilities of the North and the South.

states, the probabilities are near zero, meaning Democrats and Republicans took very different

positions on civil rights issues.

In the South, the Democratic Party and the Republican Party used to hold sharply different

attitudes toward civil rights. The probabilities of southern states are near zero in most Congresses

before 1950. In the 1950s, the probabilities increase fast. During some Congresses of the 1950s and

the 1960s, in states such as Virginia and North Carolina, the probabilities approach 1, meaning

that in these states southern Democrats and Republicans hardly disagreed with each other on civil

rights issues.

Cross-state Coalitions within a Party. Besides coalitions across parties, we also illustrate

within-party coalitions across different states and how the coalitions changed over time. In Figure

5, we show the probabilities that Democrats/Republicans in different states are in the same group.

We also show the average probabilities of northern states and southern states separately. The

probabilities measure the degree of party solidarity.

In the 1930s, northern Republicans were more unified than northern Democrats. Starting from

the end of the 1930s, northern Democrats became more likely to act together. While Democratic
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solidarity decreased slightly in the first half part of the 1940s, after the 80th Congress (1947-49),

the degree of solidarity restarted to increase slowly again. At the same time, Republican solidarity

decreased gradually over time. By the end of the 1950s, northern Republicans had become less

united than northern Democrats.

In contrast, in the South, Democratic used to be firmly unified. As northern states started

to act together to support civil rights, southern Democrats became more united in opposing civil

rights legislation. However, since the 1950s, the southern solidarity of the Democratic Party

started to dissolve gradually. By the end of the 1960s, the average probability that Democrats in

two southern states are in the same group has declined to around 0.1.

5 Concluding Remarks

Most societal changes are evolutionary rather than revolutionary, that is, gradual rather than

discontinuous. As our empirical analysis indicates, the Democratic Party’s shift to the pro-civil

rights position began in the 1930s and continued gradually until the 1960s. Before the landmark

presidential election of 1964, the Southern Democrats’ unity against civil rights started eroding in

the 1950s. To properly analyze evolutionary changes, one needs to model a continuing process of

gradual shifts in a data generating process.

This paper presents a novel dynamic Dirichlet mixture model to achive that goal. In the

proposed model, units are clustered into latent groups, and the group assignment is assumed to

be a Markov process. In each time period, a unit remains in the same group as the previous

period with a probability controlled by a stickiness parameter, or moves to another group with a

probability determined by the Chinese restaurant process conditional on the group assignments

in the previous period. Due to this group assignment process, the proposed dynamic DP model

can properly model a gradual structural change.

The proposed model is widely applicable to any data set with the repeated measurement of

multiple units, and thus its use would benefit many social scientists who are interested in temporal

dynamics of unobserved heterogeneity. To facilitate this, we are developing free, open-source, and

easy-to-use software for implementing the MCMC algorithm. We intend to create a package in the

R system consisting of pre-written functions for estimation algorithms of the model so that applied

quantitative social scientists can simply use the package to conduct Bayesian analysis using the

model.

19



References

Antoniak, C. E. (1974), “Mixtures of Dirichlet Processes with Applications to Bayesian Nonpara-

metric Problems,” The Annals of Statistics, pp. 1152–1174.

Blackwell, D., and MacQueen, J. B. (1973), “Ferguson distributions via Pólya urn schemes,” The
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