
Supplementary Information for A Dynamic

Dirichlet Process Mixture Model for the

Partisan Realignment of Civil Rights Issues

in the U.S. House of Representatives

Contents

A Summary Statistics 1

B MCMC Algorithm for the Empirical Application 2

C Simulation Study 6

C.1 Data Generating Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

C.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

C.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



A Summary Statistics

Table A.1: Summary Statistics of Four Measures of
House Members’ Positions on Civil Rights.

Con. Year Roll Calls Petitions Speeches Bill Sponsorship
No. Dem. Rep. No. Dem. Rep. Dem. Rep. Dem. Rep.

73 1933-35 0 1 0.156
(0.363)

0.717
(0.453)

0.025
(0.156)

0.025
(0.157)

74 1935-37 0 1 0.392
(0.489)

0.771
(0.422)

0.037
(0.189)

0.029
(0.167)

75 1937-39 2 0.507
(0.5)

0.521
(0.501) 2 0.224

(0.417)
0.618
(0.487)

0.059
(0.236)

0.097
(0.297)

76 1939-41 2 0.476
(0.5)

0.964
(0.186) 3 0.161

(0.368)
0.354
(0.479)

0.052
(0.222)

0.096
(0.295)

77 1941-43 3 0.589
(0.492)

0.975
(0.157) 4 0.16

(0.366)
0.222
(0.416)

0.029
(0.169)

0.018
(0.132)

78 1943-45 2 0.478
(0.5)

0.924
(0.265) 4 0.178

(0.383)
0.209
(0.407)

0.022
(0.147)

0.005
(0.068)

79 1945-47 3 0.531
(0.499)

0.895
(0.307) 4 0.305

(0.46)
0.312
(0.464)

0.036
(0.188)

0.015
(0.123)

80 1947-49 1 0.422
(0.495)

0.941
(0.235) 2 0.19

(0.393)
0.081
(0.273)

0.051
(0.22)

0.004
(0.063)

0.102
(0.606)

0.087
(0.399)

81 1949-51 4 0.567
(0.496)

0.83
(0.376) 3 0.234

(0.424)
0.076
(0.265)

0.053
(0.224)

0.023
(0.149)

0.132
(0.768)

0.08
(0.292)

82 1951-53 0 1 0.05
(0.218)

0.019
(0.138)

0.074
(0.263)

0.024
(0.154)

0.107
(0.536)

0.053
(0.33)

83 1953-55 0 2 0.272
(0.445)

0.045
(0.208)

0.073
(0.261)

0.041
(0.198)

0.178
(0.79)

0.032
(0.199)

84 1955-57 1 0.522
(0.501)

0.876
(0.33) 1 0.403

(0.491)
0.232
(0.423)

0.14
(0.348)

0.039
(0.195)

0.43
(1.625)

0.074
(0.358)

85 1957-59 2 0.55
(0.498)

0.896
(0.306) 2 0.154

(0.361)
0.071
(0.257)

0.142
(0.349)

0.078
(0.27)

0.446
(1.494)

0.118
(0.428)

86 1959-61 5 0.591
(0.492)

0.87
(0.337) 1 0.564

(0.497)
0.289
(0.455)

0.143
(0.351)

0.075
(0.265)

0.254
(1.022)

0.176
(0.792)

87 1961-63 1 0.655
(0.476)

0.855
(0.353) 0 0.095

(0.294)
0.023
(0.149)

0.374
(1.453)

0.158
(1.004)

88 1963-65 2 0.635
(0.482)

0.861
(0.347) 2 0.283

(0.451)
0.066
(0.249)

0.182
(0.386)

0.143
(0.351)

0.517
(1.642)

0.522
(1.169)

89 1965-67 2 0.761
(0.427)

0.793
(0.406) 0 0.225

(0.418)
0.161
(0.369)

0.225
(0.684)

0.629
(0.845)

90 1967-69 0 0 0.23
(0.422)

0.053
(0.224)

0.254
(0.953)

0.026
(0.191)

91 1969-71 0 1 0.46
(0.499)

0.11
(0.314)

0.352
(0.951)

0.14
(0.481)

92 1971-73 0 1 0.318
(0.467)

0.406
(0.492)

0.512
(1.813)

0.299
(0.993)

Note: This table presents the distributions of four measures of civil rights positions of House members
by parties and by year. Roll calls represent a dummy variable indicating whether a member voted
“yes” or not for a civil rights bill; petitions represent a dummy variable for signing a discharge
petition for advancing a civil right bill; speeches represent a dummy variable indicating whether a
member delivered at least one pro-civil right speech during a certain Congress; bill sponsorship is a
count variable measuring how many civil rights bills a member initialized during a certain Congress.
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B MCMC Algorithm for the Empirical Application

In Section 3.4, we introduce the MCMC algorithm for a general IgCRP process. In this

section, we present a specific algorithm for the empirical application. Most parts of the

algorithm are the same as the corresponding parts of the general algorithm. Here we explain

the parts specific to the application example.

As in Section 3.4, at the beginning of the algorithm, set an arbitrarily large number K to

truncate the number of clusters. Then initialize the starting values of gD[st] and gR[st] for

s = 1, 2, ..., 50 and t = 73, 74, ..., 92. After initialization, each iteration of the Gibbs sampler

proceeds as follows:

1. Update θk, ηk, ωk, λk for k = 1, 2, ..., K

(a) The Posterior Distribution of θk

θk ∼ Beta(αθ +N1
θ , βθ +N0

θ )

N1
θ =

92∑
t=73

50∑
s=1

IDst∑
i=1

JV
t∑

j=1

V D
istjI(gD[st] = 1) +

92∑
t=73

50∑
s=1

IRst∑
i=1

JV
t∑

j=1

V R
istjI(gR[st] = 1)

N0
θ =

92∑
t=73

50∑
s=1

IDst∑
i=1

JV
t∑

j=1

(1−V D
istj)I(gD[st] = 1)+

92∑
t=73

50∑
s=1

IRst∑
i=1

JV
t∑

j=1

(1−V R
istj)I(gR[st] = 1)

(b) The Posterior Distribution of ηk

ηk ∼ Beta(αη +N1
η , βη +N0

η )

N1
η =

92∑
t=73

50∑
s=1

IDst∑
i=1

JP
t∑

j=1

PD
istjI(gD[st] = 1) +

92∑
t=73

50∑
s=1

IRst∑
i=1

JP
t∑

j=1

PR
istjI(gR[st] = 1)

N0
θ =

92∑
t=73

50∑
s=1

IDst∑
i=1

JP
t∑

j=1

(1−PD
istj)I(gD[st] = 1)+

92∑
t=73

50∑
s=1

IRst∑
i=1

JP
t∑

j=1

(1−PR
istj)I(gR[st] = 1)

(c) The Posterior Distribution of ωk

ωk ∼ Beta(αω +N1
ω, βω +N0

ω)

N1
ω =

92∑
t=73

50∑
s=1

IDst∑
i=1

SD
istI(gD[st] = 1) +

92∑
t=73

50∑
s=1

IRst∑
i=1

SR
istI(gR[st] = 1)
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N0
ω =

92∑
t=73

50∑
s=1

IDst∑
i=1

(1− SD
ist)I(gD[st] = 1) +

92∑
t=73

50∑
s=1

IRst∑
i=1

(1− SR
ist)I(gR[st] = 1)

(d) The Posterior Distribution of λk

λk ∼ Gamma(αω + Cλ, βω +Nλ)

Cλ =
92∑

t=73

50∑
s=1

IDst∑
i=1

BD
istI(gD[st] = 1) +

92∑
t=73

50∑
s=1

IRst∑
i=1

BR
istI(gR[st] = 1)

Nλ =
92∑

t=73

50∑
s=1

IDst∑
i=1

I(gD[st] = 1) +
92∑

t=73

50∑
s=1

IRst∑
i=1

I(gR[st] = 1)

2. Sample the Transition Probability p

To sample p, we first introduce a series of dummy variables dDst and dRst for t = 2, 3, ...T

and i = 1, 2, ..., N to indicate self-transitions.

(a) Sample dDst and dDst

p(dDst = 1) =

{
0 if gD[st] ̸= gD[s, t− 1];

p
p+(1−p)qtk

if gD[st] = gD[s, t− 1] = k.

p(dRst = 1) =

{
0 if gR[st] ̸= gR[s, t− 1];

p
p+(1−p)qtk

if gR[st] = gR[s, t− 1] = k.

(b) Sample p

p ∼ Beta(αp +N1, βp +N2)

N1 =
50∑
s=1

93∑
t=72

dDst +
50∑
s=1

93∑
t=72

dRst

N2 =
50∑
s=1

93∑
t=72

(1− dDst) +
50∑
s=1

93∑
t=72

(1− dRst)

3. Update the Stick-breaking Weight πt
k and qtk:

πt
k ∼ Beta(1 + nt−1

k + nt
k, γ +

K∑
l=k+1

nt−1
l +

K∑
l=k+1

nt
l)

nt−1
k =

50∑
s=1

I(gD[s, t− 1] = k) +
50∑
s=1

I(gR[s, t− 1] = k)
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nt
k =

N∑
i=1

(1− dDst)I(gD[st] = k) +
N∑
i=1

(1− dRst)I(gR[st] = k)

qtk = πt
k

k−1∏
l=1

(1− πt
l )

4. Update gD[st] and gR[st]

Here we introduce the sampling algorithm for gD[st]. The algorithm for gR[st] follows

the same pattern.

Let define gD[t] ≡ (gD[1t], gD[2t], ..., gD[50t])′, qt ≡ (qt1, q
t
2, ..., q

t
K)

′. Let Y D
st represent

the collection of (V D
istj, P

D
istj, S

D
ist, B

D
ist)

′ for all i = 1, 2, ..., IDst and j = 1, 2, ..., JV
t /J

P
t ;

YD
t ≡ (Y D

1t , Y
D
2t , ..., Y

D
50t)

′. Finally, let define Θk ≡ (θk, ηk, ωk, λk)
′.

We sample gD[92],...,gD[t], ..., gD[73]in turn.

Pr(gD[st] = k|gD[92], ...,gD[t+ 1], p,q92, ...,q73,YD
92, ...,Y

D
73,Θ1, ...,ΘK)

∝ Pr(gD[s, t+ 1]|p, gD[st] = k,qt+1)︸ ︷︷ ︸
part 1

Pr(gD[st] = k|p,qt, ...,q73,YD
t , ...,Y

D
73,Θ1, ...,ΘK)︸ ︷︷ ︸

part 2

part 1:

Pr(gD[s, t+ 1] = l|p, gD[st] = k, qt+1
l ) = (1− p)qt+1

l + pI(l = k)

part 2:

Pr(gD[st] = k|p,qt, ...,q73,YD
t , ...,Y

D
73,Θ1, ...,ΘK))

∝ f(Yst|gD[st] = k,YD
t−1, ...,Y

D
1 ,Θ1, ...,ΘK)︸ ︷︷ ︸

part a

Pr(gD[st] = k|p,qt, ...,q73,YD
t−1, ...,Y

D
73,Θ1, ...,ΘK)︸ ︷︷ ︸

part b

part a:

f(Y D
st |gD[st] = k,YD

t−1, ...,Y
D
73,Θ1, ...,ΘK) = f(Y D

st |ΘgD[st])

f(Y D
st |ΘgD[st]) = fV fPfSfB

fV =

IDst∏
i=1

JV
t∏

j=1

(θ
V D
istj

gD[st]
(1− θgD[st])

(1−V D
istj))

fP =

IDst∏
i=1

JP
t∏

j=1

(η
pDistj
gD[st]

(1− ηgD[st])
(1−PD

istj))

fS =

IDst∏
i=1

(ω
SD
ist

gD[st]
(1− ωgD[st])

(1−SD
ist))
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fS =

IDst∏
i=1

λ
BD

ist

gD[st]
e−λ

gD [st]

BD
ist!

part b:

Pr(gD[st] = k|p,qt, ...,q73,YD
t−1, ...,Y

D
73,Θ1, ...,ΘK)

=
∑
l

Pr(gD[st] = k|p, qtk, gD[s, t−1] = l)Pr(gD[s, t−1] = l|p,qt−1, ...,q73,YD
t−1, ...,Y

D
73,Θ1, ...,ΘK)
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C Simulation Study

In this section, we describe two simulations to highlight two kinds of group membership

changes over time. In one simulation, we generate group memberships based on a structural

break model; in the other simulation, we generate group memberships based on a gradual

change model. We will show that the proposed method works well in both situations.

C.1 Data Generating Process

Recall the question of changing voting group we described in the motivating example. To

simplify, we set up the question as the following: there are T = 30 parliamentary sessions,

N = 50 representatives, and M = 4 issues to vote in each session. There are different voting

groups in the parliament. For representative i in a voting group g, the probability of voting

“yea” for issue j in session t follows a Bernoulli distribution, Bernoulli(θgjt). We use different

ways to generate group memberships in simulation 1 and simulation 2.

Simulation 1: a structural break model. Two transition points at t = 11 and 21

separate the 30 parliamentary sessions into three periods. In the first period, there are 3

groups, with 20 representatives in group 1, 20 representatives in group 2, and 10 representa-

tives in group 3; entering into the second period, 5 representatives in group 1 change to group

2 and 10 representatives in group 2 shift to group 1; in the last period, 5 representatives in

group 1 change to group 2, 5 representatives in group 3 move to group 1, and the other 5

representatives in group 3 move to group 2.

To summarize, there are 3 groups in the first and second periods, and only 2 groups in the

last period. For each group, we generate the parameter θgjt of the Bernoulli distribution that

models the voting outcomes from a uniform distribution. For group 1, the four uniform dis-

tributions for the four voting issues are Uniform(0.8, 1), Uniform(0.7, 1), Uniform(0, 0.2)

andUniform(0, 0.3); for group 2, they areUniform(0, 0.2),Uniform(0, 0.3),Uniform(0.8, 1)

andUniform(0.7, 1); for group 3, they areUniform(0.7, 1),Uniform(0, 0.2),Uniform(0, 0.3)

and Uniform(0.8, 1).

Simulation 2: a gradual change model. In the first 5 parliamentary sessions, there

are 3 groups with 20, 20, and 10 representatives in each group. From t = 6 to t = 25, repre-

sentatives in group 1 may change to group 2 with a probability of 0.5, and this change may

happen at any time during this period; similarly, with a probability of 0.5, representatives in

group 2 may shift to group 1 at a random time; for representatives in group 3, they will shift

to group 1 with a probability of 0.5 and otherwise they will shift to group 2. The process

to generate θgjt for each group g and each issue j in session t is the same as the process in

simulation 1.
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C.2 The Model

In section 3, we only describe a general version of the proposed method. Here, we introduce

the detailed model we use to analyze the simulated data.

Let g[it] represent the group of representative i in session t. Then,

g ∼ IgCRP(γ, αp, βp)

For Vijt, the vote of issue j that representative i in sessions t casts, we assume it follows

a Bernoulli distribution Bernoulli(θjk) for g[it] = k. Unlike the data generating process, we

assume that θjk does not change with t. As we will show, the model still works well under

this assumption.

Vijt ∼ Bernoulli(θj,g[it])

For g[it] = 1, 2, ..., k, ..., we assume:

θjk ∼ Beta(αθ,βθ
).

The MCMC algorithm for this model is a simplified version of the MCMC algorithm we

use for the empirical application. Thus, we skip the detailed algorithm here.

C.3 Results

We first investigate whether the proposed method can detect the true transition points. For

each unit, we calculate the probability that the unit in the current time and in the former

time are in different groups. A probability approaching 1 indicates a transition point. As

shown in Figure C.1, the proposed method detects almost all transition points, successfully

recovering both the structural break model and the gradual change model.

Besides checking whether the proposed method can detect the true transition points, we

also investigate whether our method recovers true group memberships across units and over

time together. For this purpose, we calculate the probability that two observations (they

are either from different units,or in different time points, or both) are in the same group

for all possible pairs. As we know the true group memberships in simulation studies, we

separate pairs in different groups from pairs in the same group. For pairs in different groups,

we expect the density of probabilities that two observations are in the same group to center

around 0; for pairs in the same, we expect the density of probabilities to center around 1. As

shown in Figure C.2, the proposed method discovers the true group memberships for both

the structural break model and the gradual transition model.
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(2) Recover Gradual Change Model

Figure C.1: Probabilities of Changing to a New Group. In the left figure, data is generated
through a structural break model; in the right figure, data is generated through a gradual
change model. A square represents the probability that the unit in the current time changes
to a different group. The true transition points are circulated with green lines. This figure
shows that no matter the data is generated through a structural break model or a gradual
change model, the proposed method works well in identifying the transition point.
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Figure C.2: Densities of Probabilities that Two Observations are in the Same Groups. As we
know the true memberships, we can separate pairs in the same groups from pairs in different
groups and calculate the densities separately.
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