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Abstract

Conjoint analysis is widely used for estimating the effects of a large number of

treatments on multidimensional decision making. However, it is this substantive ad-

vantage that leads to a statistically undesirable property, multiple hypothesis testing.

Existing applications of conjoint analysis except for a few do not correct for the number

of hypotheses to be tested, and empirical guidance on the choice of multiple testing

correction methods has not been provided. This paper first shows that even when

none of the treatments has any effect, the standard analysis pipeline produces at least

one statistically significant estimate of average marginal component effects in more

than 90% of experimental trials. Then, we conduct a simulation study to compare

three well-known methods for multiple testing correction, the Bonferroni correction,

the Benjamini-Hochberg procedure, and the adaptive shrinkage. All three methods are

more accurate in recovering the truth than the conventional analysis without correc-

tion. Moreover, the adaptive shrinkage method outperforms in avoiding false negatives,

while reducing false positives similarly to the other methods. Finally, we show how

conclusions drawn from empirical analysis may differ with and without correction by

reanalyzing applications on public attitudes toward immigration and partner countries

of trade agreements.
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1 Introduction

Conjoint analysis has been one of the most widely used survey experimental designs in polit-

ical science, since Hainmueller, Hopkins and Yamamoto (2014) defined the average marginal

component effect (AMCE) as an estimand in conjoint designs and developed a simple es-

timator. In a typical conjoint experiment, respondents are asked to assess pairs of profiles

and choose a preferred one in each paired comparison. The profiles consist of theoretically

relevant attributes that reflect multiple dimensions of respondents’ preferences, and the at-

tributes are independently randomized across the profiles. For instance, Hainmueller and

Hopkins (2015) examined individual-level attributes of a hypothetical immigrant such as

gender, education, occupation, and the country of origin. Using a conjoint experiment, the

authors estimated the AMCEs of those attributes on the probability that the immigrant’s

admission is preferred. After this canonical study, conjoint designs are used to study voting

(e.g., Carnes and Lupu, 2016; Teele, Kalla and Rosenbluth, 2018; Ono and Burden, 2019;

Incerti, 2020), bureaucratic selection (e.g., Liu, 2019; Oliveros and Schuster, 2018), and other

types of multi-dimensional decision making (e.g., Sen, 2017; Fournier, Soroka and Nir, 2020;

Shafranek, 2021).1

Conjoint analysis “enables researchers to estimate the causal effect of multiple treatment

components and assess several causal hypotheses simultaneously” (Hainmueller, Hopkins

and Yamamoto, 2014, p.1). This property is extremely valuable substantively. Since a

number of factors contribute to decisions, isolating the causal effect of each factor under

all combinations of the others would require impractically many experimental conditions.

Conjoint analysis overcomes this difficulty by identifying the AMCEs of multiple attributes

at once. AMCE is the causal effect of an attribute averaged over all profiles of the other

attributes, and it has an intuitive interpretation (Bansak et al., 2022). The combination of

conjoint designs and AMCE enables researchers to estimate the effects of multiple features

simultaneously.

Despite this substantive advantage, producing many estimates leads to a statistically

undesirable property, multiple hypothesis testing. Testing multiple hypotheses in statistical

inference is problematic because the more null hypotheses are tested, the more likely at least

one of them is to be rejected, even if all of them are true. The prespecified critical value,

conventionally set at .05, represents the probability of falsely rejecting the null hypothesis

assuming that only one is tested. When several hypotheses are tested simultaneously, the test

procedure needs to be modified. In political science, multiple testing has not been considered

as a common concern because studies usually intend to examine only a few hypotheses.2

1For a more comprehensive list of conjoint experiment papers, see de la Cuesta, Egami and Imai (2022).
2Recently, however, multiple testing correction is used more often as robustness checks than before. We
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However, since conjoint analysis is designed exactly for estimating multiple effects, it cannot

avoid multiple statistical tests. The immigration application in Hainmueller, Hopkins and

Yamamoto (2014), for example, involves 41 hypothesis tests in total. Theoretically, even if

all 41 AMCEs are zero in truth, estimates of two AMCEs will be statistically distinguishable

from zero on average across experimental trials. The promise of conjoint analysis implies

many statistical tests, and false-positive conclusions may follow as a result.

To our knowledge, existing studies in political science using conjoint analysis do not

correct for multiple testing in their main analysis except for Hainmueller, Hangartner and

Yamamoto (2015), which use the Bonferroni correction. A few others, for example Clayton,

Ferwerda and Horiuchi (2021), confirm their results with corrections as robustness checks.

In fact, researchers are aware that multiple hypothesis testing is an inherent problem with

conjoint designs. Bansak et al. (2021b, p.28) point out that the concerns about multiple

comparisons make pre-registration and pre-analysis plans especially valuable. However, no

systematic assessments have been done on the severity of the problem in the literature. More-

over, to avoid haphazard selection, applied researchers need guidance on which correction

method among several well-known ones is appropriate under their circumstances.

In this paper, we quantify the multiple testing problem in conjoint designs and assess

easy-to-implement correction strategies. First, we show that under a classic conjoint setup

the standard analysis pipeline produces at least one statistically significant AMCE estimate

in more than 90% of experimental trials even when all AMCEs are zero.

Second, we compare the strengths and limitations of two well-known correction meth-

ods, the Bonferroni correction (Dunn, 1961; Bland and Altman, 1995) and the Benjamini-

Hochberg procedure (Benjamini and Hochberg, 1995). In addition, we introduce a recently

developed correction method, adaptive shrinkage (Stephens, 2017; Gerard and Stephens,

2018). While none of the methods completely resolves the problem, all of them are better

than the standard practice. Among the three methods, the Bonferroni correction guards

against false-positive conclusions, but the cost of false-negative conclusions can be signifi-

cant. On the other hand, the Benjamini-Hochberg is the least susceptible to false-negative

conclusions, but it is most lenient with false positives. The adaptive shrinkage takes a middle

ground.

To illustrate how different correction methods perform in real data, we reanalyze two

conjoint design applications. The first application using the data set of Hainmueller, Hop-

kins and Yamamoto (2014) demonstrates that results corrected by the adaptive shrinkage

are more consistent with the original authors’ argument than other methods. Second, reanal-

ysis of an experiment in Vietnam about the selection of trade agreement partners (Spilker,

thank Yusaku Horiuchi for pointing this out.
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Bernauer and Umaña, 2016) shows that corrected methods remove the statistical significance

on an attribute that is hard to interpret given Vietnam’s security policy.

Compared to other studies that propose improvements on conjoint survey designs, this

paper exclusively focuses on statistical inference. Existing studies have examined estimands

and interpretation (Egami and Imai, 2019; de la Cuesta, Egami and Imai, 2022; Ganter,

2021; Abramson, Koçak and Magazinnik, 2022; Abramson et al., 2020; Bansak et al., 2022),

implementation (Bansak et al., 2018, 2021a), social desirability bias (Horiuchi, Markovich

and Yamamoto, 2020), and subgroup analysis (Leeper, Hobolt and Tilley, 2020; Clayton,

Ferwerda and Horiuchi, 2021). While this paper does not directly engage with any of these,

the issue of multiple testing is relevant to any statistical inference with conjoint analysis

due to its multiple comparison feature, unless the purpose of the analysis is exclusively

exploration of higher-order interaction effects (Egami and Imai, 2019).

The paper proceeds in four sections. First, we discuss why multiple testing is a problem in

conjoint designs and quantify the problem. Then, we examine three correction methods and

compare their performance in a simulation study. Third, we apply the correction methods to

two conjoint experiment data sets. Finally, we summarize the paper and discuss suggested

analysis pipelines for conjoint designs in the concluding section.

2 False-Positive Findings in Conjoint Analysis

When a large number of hypothesis tests are conducted, some reject null hypotheses purely

by chance. With the conventional significance level of .05, a test rejects a true null hypothesis

with probability .05. That is, the test tolerates five false positives out of 100 experimental

trials on average. However, the probability that at least one of multiple tests rejects its

null hypothesis can be much larger depending on the number of hypotheses. When ten

hypotheses are tested, this probability, known as the familywise error rate (FWER), is

1 − Pr(None of the ten tests rejects the null) = 1 − (1 − .05)10 = .401. If the number of

tests is 20, the FWER increases to .642. (See Supplementary Information (SI) A.) Since

the number of hypotheses is greater than 20 in most conjoint experiments, the problem is

even more severe—in fact, it is almost guaranteed that at least one AMCE will be deemed

statistically distinguishable from zero in any conjoint experiment, even if all AMCEs are

zero in truth.

To illustrate how likely conjoint experiments may produce false-positive findings, we

conducted a simulation study. Simulated data sets are generated from the conjoint design

of Hainmueller, Hopkins and Yamamoto (2014). The design consists of nine attributes with

total 50 levels, and therefore requires 41 comparisons excluding a reference level in each

attribute. The forced-choice design is simulated by coarsening linear continuous responses
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Figure 1: False-positive Results of Estimated AMCEs when All Null Hypotheses
are True. Each bar presents the number of data sets (y-axis) for each number of
statistically significant estimates (x-axis), with the truth (no significant findings) shaded by
gray.

into a binary choice in each pair of profiles. 1,000 simulation data sets are generated under the

scenario that the true AMCEs of all attributes are zero. In particular, the individual marginal

component effect (MCE) is generated from N (.06, .0152) for a half of the respondents and

from N (−.06, .0152) for the other half. We estimate AMCEs for each simulated data set

following the standard analysis pipeline for conjoint analysis and test the null hypothesis

that each AMCE is zero.3

Figure 1 shows that only less than 75 out of 1,000 experimental trials correctly conclude

that none of the attribute levels has any average effect. In other words, more than 90%

of experiments may produce false-positive findings. Although we observe that the rate of

false-positive findings is a little lower (around 80%) under some other simulation settings

(SI B), the high false positive rate is concerning for applied research.

3 Multiple Testing Correction Methods

This section briefly introduces two popular methods, Bonferroni Correction and Benjamini-

Hochberg Procedure, and a recently developed method, adaptive shrinkage. Then, The

respective advantages and limitations of these methods will be illustrated by Monte Carlo

simulations.

3For greater details of the simulation settings, see SI B.
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3.1 Bonferroni Correction

The Bonferroni correction (Dunn, 1961; Bland and Altman, 1995, henceforth BC) reduces

the FWER by using a more stringent threshold as the number of tests increases. To control

the FWER below α, the BC tests each hypothesis at the significance level α/(# of tests).

Therefore, when five hypotheses are tested at the conventional 5% level, each test is con-

ducted at the 1% level. The BC is easiest to implement among the methods to control the

FWER, since researchers only need to implement the standard test procedure and construct

confidence intervals with a new significance level.

One caveat is that the BC can be overly conservative. In many applications, the BC

reduces the FWER substantially lower than the level set by the user. Hence, the BC may

suffer low statistical power and false-negative findings. We illustrate this point later in our

simulation study.

Another critique of the BC is that the total number of tests in a “family” cannot be unam-

biguously defined and tracked (Sjölander and Vansteelandt, 2019). Hochberg and Tamhane

define family as “[a]ny collection of inferences for which it is meaningful to take into account

some combined measure of errors” (1987, p.5). While conjoint designs clearly pre-specify

the number of attribute levels, researchers often conduct many tests to ensure survey quality

such as balance and attention checks. Moreover, many applications include subgroup com-

parisons (Leeper, Hobolt and Tilley, 2020). It may not be obvious which tests should be

included in the “family” when using the BC.

While the decision on the number of tests may increase the researchers’ degree of freedom,

this problem should be ameliorated by pre-registration, as Bansak et al. (2021b) suggest for

conjoint experiments in general. What constitutes a family depends on whether the type

of research is exploratory or confirmatory. “In purely exploratory research the question of

interest (or lines of inquiry) are generated by data-snooping. In purely confirmatory research

they are stated in advance. Most empirical studies combine aspects of both types of research”

(Hochberg and Tamhane, 1987, p.5). Discussing this issue in greater detail is beyond the

scope of this paper, but pre-registration will ameliorate this ambiguity to some extent. In

the conclusion section, we provide a recommendation checklist for conjoint users.

3.2 Benjamini-Hochberg Procedure

The Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995, henceforth BH) con-

trols another measure of false-positive findings, the false discovery rate (FDR), which is

defined as

FDR ≡ E
[

# false discoveries

# total discoveries

]
.
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The FDR indicates the average proportion of false positives among all statistical findings.

Therefore, lowering the FDR implies that researchers can be more confident in their findings.

The BH is a method for containing the FDR under a pre-set level α. The value of α is

commonly set to .05, i.e., 5% of null hypothesis rejections are false positives on average. The

key idea of the BH is to remove some findings after conducting standard hypothesis tests.

In other words, it prunes significant estimates so that researchers obtain fewer false findings.

The BH is a rank-based method with four steps. 1) For m hypotheses, a m-vector of

p-values is produced. 2) Rank the p-values in the ascending order and index by i. 3) Define

k ≡ max{i : pi ≤ α× i/m, 0 ≤ i ≤ m}. 4) Reject null hypotheses Hi for i = 1, 2, ..., k, whose

p-values are smaller than or equal to pk, or reject none if k does not exist.

Although discussing theoretical properties of the BH (e.g., Benjamini and Hochberg, 1995;

Benjamini and Yekutieli, 2001) is beyond the scope of this paper, the BH is less susceptible to

false-negative conclusions than the BC, because it accepts all statistically significant findings

in its first step. However, the BH eliminates fewer false-positive findings. Moreover, the BH

does not offer confidence intervals because it uses the p-values. We illustrate these limitations

below by simulations and applications.

3.3 Adaptive Shrinkage

The adaptive shrinkage (Ash) is a recently-proposed, empirical Bayes approach to controlling

the FDR developed by Stephens (2017) and Gerard and Stephens (2018). Applied researchers

can easily incorporate the Ash in conjoint analysis routine using the ashr package in R

(Stephens et al., 2020).

The basic idea of the Ash is post-hoc regularization of estimated coefficients using a spike-

and-slab prior (see Figure 2). Regularization, in general, decreases the sampling variance

of an estimator by introducing additional information into estimation. For the Ash, the

spike-and-slab prior is such auxiliary information. On the one hand, the spike part reflects

the fact that some estimates are false positives, inducing estimates to be zero with a certain

probability. On the other hand, the slab part allows estimates to be non-zero with the

remaining probability. As a result, the Ash shrinks estimated coefficients and produces

narrower confidence intervals and smaller mean squared error. As shown in Section 5, the

Ash moves point estimates of small absolute values toward zero and removes their statistical

significance. By contrast, large point estimates are preserved and their confidence intervals

are shortened.

Formally, let β = (β1, ..., βJ) denote estimates for J attribute levels, β̂ = (β̂1, ..., β̂J)

denote point estimates of β, and ŝ = (ŝ1, ..., ŝJ) be the standard errors of β̂. Consider the
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Figure 2: Example of the Spike-and-slap Prior Distribution. The spike (point mass)
is at zero, and the slap (grey curve) follows a normal distribution.

posterior distribution of β given β̂ and ŝ:

p(β|β̂, ŝ) ∝ p(β̂|β, ŝ)p(β|ŝ). (1)

The likelihood in Equation 1 is the sampling distribution of β̂ approximated by the nor-

mal distribution with mean β and variance ŝ2. To regularize a large number of estimates,

independent spike-and-slab prior distributions are placed. Since the Ash is an empirical

Bayes method, the mixture probabilities of the spike-and-slab prior are estimated by max-

imizing the penalized likelihood and then the posterior parameters are estimated using the

prior parameter estimates. The confidence intervals are constructed based on the posterior

distribution of β. SI C.1 provides a greater detail of the model and estimation.

The Ash delivers an additional benefit because of the shrinkage property. Its regulariza-

tion leads to smaller mean squared errors of the point estimates. This is attractive because

in many social science applications, researchers are interested not only in “whether factor

X affect respondents’ choice,” but also in “to what extent.” The classic immigrant conjoint

experiment, for instance, found a bonus for some education relative to no formal education.
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When researchers would like to estimate the amount of the education bonus, the other cor-

rection methods do not reduce the sampling error of point estimates. The Ash, however,

enables us to get more precise estimates in a principled manner. SI C.2 illustrates this point

by simulations.

4 Comparing Correction Methods

This section examines the performance of the three methods by a series of simulations. In

all simulations, we generate 1, 000 samples from simulation experiment using the immigrant

profile data of Hainmueller, Hopkins and Yamamoto (2014), and conduct hypothesis tests

at the conventional significance level of .05. The total number of tests for the BC is set to

the total number of comparisons of attribute levels and a reference category. First, we apply

the correction methods to the case where the true AMCE is zero for all attributes (identical

to Section 2). Second, we compare the correction performance in more realistic cases where

some attributes have non-zero AMCEs.

4.1 Zero AMCEs

The results are summarized in Figure 3. As in Figure 1, the bars represents the number of

data sets for each number of statistically significant estimates. Note that the black bars are

identical to Figure 1. Figure 3 also shows the results of the BC, BH, and Ash with a mixture

of uniform components and with a mixture of normal components.

All three correction methods dramatically reduce the probability of false findings. Be-

cause all null hypotheses are true, all simulations should result in zero significant coefficients.

As we discussed in Section 2, more than 90% experimental trials would produce at least one

significant estimate without correction. By contrast, both the BC and BH remove false find-

ings in more than 90% of simulation data sets. The Ash performs even better. It eliminates

almost all false-positive findings.

4.2 Non-zero AMCEs

It is perhaps rare that all AMCEs are zero in applications, because attributes are designed to

capture promising theoretical hypotheses. We consider two sets of more realistic simulations

where some AMCEs are not zero to see how the correction methods perform in such settings.

In the first scenario, one binary attribute has a non-zero AMCE, and the results are

shown in Table 1. In the original profile data, this attribute corresponds to Gender. We

vary the noise in simulations by changing the heterogeneity of AMCEs and the error variance

of the regression model for latent responses. Since only Gender has an effect, the shaded cells

are the target we would like to hit: tests identify only one true-positive finding and no false
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Figure 3: False-positive AMCE Estimates when All Null Hypotheses are True
with Correction Methods. While the standard analysis pipeline correctly accepts all
null hypotheses in fewer than 80 data sets, the BC, BH, and Ash all correct multiple
testing in more than 900 experimental trials with the Ash performing the best.

findings. The pattern is quite consistent with the simulation results shown in Section 4.1.

Without correction, about 80% of experimental trials produce at least one false-positive

finding. All correction methods improve the situation remarkably, with the Ash has the best

performance in all circumstances.

In the second scenario, all levels of the attributes that correspond to Gender, Education,

and English in the original data have non-zero AMCEs, whereas the AMCEs of the others

are zero.4 Table 2 presents the results. Because ten levels have non-zero AMCEs, the shaded

cells indicate the number of data sets in which hypothesis tests are perfectly accurate. All

cells to the right (above) are the number of samples where some false positives (negatives)

are produced. For example, without correction, 248 experimental trials successfully detect

exactly the true non-zero AMCEs; 314 detect those AMCEs, plus one false-positive result;

three experiments do not yield any false-positive findings, but missed one non-zero effect.

Table 2 shows the trade-off in using correction methods. On the one hand, the use of a

correction method dramatically improves the number in the shaded cells. In contrast to 248

without correction, almost all correction methods find the truth in more than 600 samples.

On the other hand, as the Sum column indicates, all correction methods produce false

negatives more often than the standard approach. Reducing the number of false positives

4SI B.2 describes simulation parameters.
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No. of False Positives
0 1 2 3 4 5 6 7 8

No. of True Positives

No corr. 1 230 290 215 123 69 42 19 9 3

Bonf. corr. 1 966 32 2

BH corr. 1 931 61 7 1

ashUnif corr. 1 996 4

ashNorm corr. 1 998 2

(a) Baseline

No. of False Positives
0 1 2 3 4 5 6 7 8 9 10 11 12

No. of True Positives

No corr. 1 237 253 223 134 83 38 17 6 2 6 1

Bonf. corr. 1 962 37 1

BH corr. 1 930 55 7 5 1 1 1

ashUnif corr. 1 984 14 2

ashNorm corr. 1 987 12 1

(b) Larger Error Variance

No. of False Positives
0 1 2 3 4 5 6 7 8 9 10

No. of True Positives

No corr. 1 191 288 228 125 79 42 30 9 3 2 3

Bonf. corr. 1 951 43 6

BH corr. 1 902 83 12 3

ashUnif corr. 1 982 15 3

ashNorm corr. 1 985 13 2

(c) Larger Heterogeneous AMCE and Error Variance

Table 1: Number of Data Sets for Each Number of True- and False-positive Find-
ings when the AMCE of Gender is Non-zero. (a) The effect of male is −.06 and the
effects of female and all other attributes are drawn independently from N (0, .0152). The
error variance of the regression model for continuous responses is .012. (b) AMCEs are iden-
tical to Table 1a, but the error variance of the regression model is .12. (c) The effect of male
and the other attributes and the error variance are identical to Table 1b, but the effect of
female is independently drawn from N (0, .122). Empty cells indicate zero.
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No. of False Positives
0 1 2 3 4 5 6 7 8 9 10 Sum

No. of True Positives

No corr.
9 3 2 1 2 2 10

10 248 314 195 116 56 33 14 9 2 2 1 990

Bonf corr.

8 35 3 38

9 289 13 1 303

10 625 33 1 659

BH corr.

8 1 1

9 45 17 6 2 70

10 589 253 57 16 9 4 1 929

ashUnif corr.

8 18 1 19

9 151 18 4 3 176

10 620 151 26 3 4 1 805

ashNorm corr.

8 15 2 17

9 178 23 6 1 208

10 645 106 18 3 2 1 775

Table 2: Number of Data Sets for Each Number of True- and False-positive
Findings when the True AMCEs of All levels in Gender, Education, and English

are Non-zero. Obtaining ten true positives and zero false positives (shaded) is the ground
truth. Empty cells indicate zero.

comes at a cost of increasing the number of false negatives. Moreover, the trade-off exists

among the correction methods, too. As the most conservative correction method, the BC

produces false negatives in about 30% of experimental trials. The BH is least likely to miss

the true AMCEs, but it produces more false-positive conclusions than the other two. The

Ash takes the middle ground: it produces false-negative findings less likely than the BC, and

false-positive results less likely than the BH.

Given this trade-off, should researchers use a correction method? In Figure 3 and Table 1,

the answer is clear: any correction method dominates non-correction. When only zero or one

attribute level has AMCE, the use of correction methods reduces the risk of false-positive

findings at no cost since there is nothing to be missed. However, if many levels have AMCEs

as in Table 2, correction methods decrease the number of false positives in exchange for an

increase of the number of false negatives. Hence, correction methods may not be uniformly

better than not correcting.

Figure 4 presents a measure to evaluate this trade-off. It shows the distribution of the

True Positive Rate (TPR) minus the False Positive Rate (FPR) across samples in the same
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Figure 4: Density Histograms of the Difference between True Positive Rate (TPR)
and False Positive Rate (FPR). A larger value on the x-axis indicates better performence.
The figure is based on the same simulations as Table 2.

simulations as Table 2. The TPR is the number of true positives divided by the number of

true non-zero AMCEs while the FPR is the number of false positives divided by the number

of true zero AMCEs. If a test is perfect, its TPR is one and FPR is zero, because the ideal

test finds all non-zero AMCEs and does not falsely reject the null on any zero AMCEs.

Therefore, the higher density is concentrated on the right in Figure 4, the better. The figure

shows that the BH and the Ash achieve a value larger than .85 in almost all simulated

samples while the distribution without correction has a longer tail on the left. The figure

indicates that researchers are more likely to get the ideal outcome with a correction method

than without any.

These simulations demonstrate the promise and pitfalls of multiple testing correction

methods. First, researchers should always use some correction method when conducting

conjoint survey experiments. Since conjoint analysis inherently requires a large number of

hypothesis tests, some, if not all, statistically significant findings are likely to be false posi-

tives. Second, the risk of false-positive findings cannot be entirely eliminated, and correction

methods differ across the ability and cost of reducing the number of false positives. The BC

is most aggressive in avoiding false positives, but its cost of missing true findings may be

substantial. The BH is the opposite, and the Ash is in between the two. Although none
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provides the perfect solution, researchers should choose a correction method that best suits

their needs. In particular, the choice should be based on a careful assessment on the relative

tolerance of false positives and false negatives.5 We provide a checklist as an additional

guidance in concluding remarks.

5 Reanalysis

To illustrate how the use of the correction methods may change empirical conclusions, we

apply the correction methods to two published applications of conjoint experiment.6 Overall,

the pattern we observe in the reanalysis is consistent with the simulations. The BC reduces

the number of findings the most, and some of the results that are changed to null are

substantively questionable. On the other hand, the BH does not eliminate any findings of

the original papers. The Ash corrects fewer findings away than the BC, but its results seem

to make the most substantive sense.

5.1 Selecting Immigrants in the US

In the seminal paper on conjoint designs for causal inference, Hainmueller, Hopkins and Ya-

mamoto (2014) employs the conjoint design to explore the AMCEs of immigrants’ attributes

on preference for admission to the United States. There are nine attributes: Gender, Educa-

tion, Language, Origin, Profession, Job experience, Job plans, Application reasons, and Prior

trips to U.S.. To exclude unrealistic attributes combinations, the randomization for Educa-

tion, Profession, Country of Origin, and Application reasons are conditionally independent

given some constraints, and the randomization for the other five attributes are completely

independent. The outcome variable is whether a respondent prefers a given profile in a

paired comparison.

We focus on two attributes, Country of origin and Profession, shown in Figure 5.7 The

left panel of Figure 5 shows the estimates of the AMCE of each country of origin relative to

India, with no correction, the BC, the BH, and the Ash. The most noticeable pattern is that

the BC eliminates the statistical significance of all estimates except for the effect of Iraq. If we

believe the BC results, respondents in their survey did not distinguish immigrants from India,

Mexico, France, Germany, Sudan, and Somalia. On the other hand, coefficients adjusted by

the BH and the Ash largely preserve the original paper’s conclusion that immigrants from

Sudan, Somalia, and Iraq are less preferred than those from India.

The right panel of Figure 5 presents the results on the Profession attribute. Janitor

is the reference category. The original results suggest that there is a bonus for financial

5Additional simulation results with more noisy data are shown in SI B.3
6SI D.3 shows the reanalysis of another paper in comparative politics.
7For the entire replication results, see SI Figure D.1.
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analysts, construction workers, teachers, computer programmers, nurses, research scientists,

and doctors. Again, the BC renders more coefficients insignificant: financial analysts and

computer programmers are indistinguishable from janitors. While the BH preserves all

the original findings, the Ash changes the results for construction workers—the bonus for

construction workers is indistinguishable from zero. The Ash result is in fact consistent with

the argument of the original paper that high-skilled immigrants are preferred to low-skilled

workers.

While we cannot adjudicate on the differences with certainty because the true value is

unknown, some correction methods lead to more substantively understandable results over

the others. The BC seems overly conservative, and its null findings may require further

theoretical justification. The BH results agree with most non-corrected results, including

some unexpected significant estimates. The Ash corrects some findings away but not as

aggressively as the BC does, and it leads to conclusions that make most substantive sense

in this application.

5.2 Selecting Trading Partners in Vietnam

Conjoint experiment is also useful in examining attributes of units other than individuals.

Spilker, Bernauer and Umaña (2016) explores what types of countries are preferred partners

for Preferential Trade Agreements (PTAs) by conducting conjoint surveys in Costa Rica,

Nicaragua, and Vietnam. They include eight attributes in their design: Distance from the

partner country’s capital with three levels; Size of the economy with three levels; Culture,

a binary variable indicating similarity in tradition and language of the partner country;

Religion, which contains three religions for Costa Rica and Nicaragua and four religions

for Vietnam; Political system, three levels of the extent to which citizens democratically

elect political leaders; Military ally, a binary variable indicates whether the partner country

has a security alliance with respondents’ home country; Environmental protection standards

and Worker rights protection standards, each takes three levels. All these attributes are

completely randomized and no profile is excluded in the original surveys. The outcome is

binary, whether respondents choose a country profile in a paired comparison.

Figure 6 focuses on the effect of two attributes Military ally and Environmental protection

standards on the respondents in Vietnam.8 Among the three countries, Vietnam is the only

one where non-military allies are punished relative to military allies. The original paper

justifies the finding by its geopolitical location and military-security rivalries in the region

(Spilker, Bernauer and Umaña, 2016, p.710,714). However, Vietnam has a “Three Nos”

defense policy since 1998: no military alliance, no aligning with one country against another,

8The complete replication results can be found in Figure D.2 of Supplementary Appendices.
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Figure 6: Effects of Military Ally (Top) and Environmental Protection Standards
(bottom) on the Probability of Being Preferred as Trading Partners in Viet-
nam. For Military ally, the reference category is allied; for Environmental Protection

Standards, the reference category is lower standards. The plot shows estimates with no
correction, the BC (Bonf), the Ash with a mixture of normal components (ash.Norm), and
the Ash with a mixture of uniform components (ash.Unif) for each pair of comparison. BHX
next to point estimates indicates the BH corrected coefficient is significant for that specific
attribute level. Estimates are based on regression estimators with clustered standard errors
at respondent level; bars represent 95% confidence intervals. Bars with solid circles are esti-
mates with no correction, which replicate corresponding attributes in Figure 1.3 in Spilker,
Bernauer and Umaña (2016, p.715).

and no foreign military bases on Vietnamese soil.9 The context makes it difficult to interpret

the significant result, because it is unclear what military allies mean to Vietnam given this

defense policy. While the BH preserves the original finding, the BC and the Ash correct it

away.

For environmental standards, while the preference for higher standards relative to lower

standards is robust to different correction results, the bonus for countries with similar stan-

dards is not. Again, the BC and the Ash render it a false positive conclusion. The BH agrees

completely with the original conclusion, but we cannot rule out the possibility that this is

9Socialist Republic of Vietnam Ministry of National Defence, 2009.
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guaranteed by the design of BH: there are not enough significant discoveries to begin with

to control for FDR. A lower FDR may be needed to accommodate the smaller number of

significant findings in social science researches.

The replication exercise demonstrates the usefulness of applying correction methods in

conjoint design from a substantive perspective. Correction methods could raise alarms of

potential limitations in the profile design. Such warnings would be valuable especially in

the phase of pilot research or pretesting. Moreover, results that stand the test of correction

would help authors make more convincing arguments. In this application, the authors of

the original paper needed to justify their finding on the preference for military allies only in

Vietnam, but it is difficult to interpret this finding given the fact that Vietnam has not have

military allies for a while and will not for the foreseeable future. The authors could have

avoided interpreting this result by using the BC or the Ash, even though they included the

Military ally attribute, which should have been excluded from the design.

6 Concluding Remarks

Conjoint analysis is widely used in political science because it allows researchers to estimate

the effects of many variables on preference formation. Unfortunately, exactly because it is

designed for estimating multiple effects, statistical inference on estimates in conjoint designs

suffers from the multiple testing problem. However, few systematic assessments on the

severity of the problem and little empirical guidance on the choice of correction methods have

been provided. In a series of simulations and applications to published data, we examined the

probability of getting false positive conclusions from a typical conjoint survey experiment,

and compared the performance of three off-the-shelf multiple testing correction methods.

Although some correction is always better than no corrections, none of the methods

provides the perfect solution to the problem. The Bonferroni correction is most conservative.

Therefore, it is least likely to mislead researchers to false positive conclusions while it is

most likely to mislead researchers to false negative conclusions. The Benjamini-Hochberg

procedure is the opposite. We even found that the Benjamini-Hochberg procedure does

not change the statistical significance of any estimates in some applications. The adaptive

shrinkage method takes a middle ground between the two. While it reduces the probability

of false positives than the Benjamini-Hochberg, it avoids false negatives better than the

Bonferroni correction.

Whether being conservative (or lenient) is a virtue rather than a vice depends on the pur-

pose of researchers. We believe that the adaptive shrinkage method should be recommended

when researchers do not have much prior knowledge on the existence of AMCEs, because

it is unclear which of false positives or false negatives the researchers need to avoid more.
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Figure 7: Checklist for Multiple Hypothesis Testing in Conjoint Analysis.

However, the Benjamini-Hochberg procedure might be preferred if previous studies strongly

suggest the existence of AMCEs, whereas the Bonferroni correction should be recommended

for AMCEs whose existence is considered unlikely. In the former, although the rejection

of the null is not surprising, researchers can cast more doubt on the prior knowledge if the

null is accepted. In the latter case, passing a more conservative test is valuable information

because it is more likely to be a new finding. The comparison in our paper provides a guide

in selecting the correction method that suits a particular application.

Figure 7 summarizes our recommendations on the use of multiple testing correction meth-

ods in conjoint analysis. It helps researchers reduce missing steps and ensures consistency

and completeness. Importantly for our purpose, it guides researchers to contemplate a se-

ries of questions related to multiple hypothesis testing at different stages of the study. The

checklist is divided into three sections, design, pre-registration, and analysis.

During the design phase, scholars determine their research objective, whether the conjoint

experiment is to confirm findings in existing studies or it is exploratory in nature. The

distinction between the two types of research is fuzzy in many empirical studies. This item

is not designed to force researchers to choose one or the other, but rather it reminds them to

be more precise, and their inclination will provide a direction for the pre-registration stage.

As discussed above, if the research objective is confirmatory, we recommend that re-

searchers use the more stringent Bonferroni correction and specify the number of tests they
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plan to conduct in the pre-registration. The number of tests is the collection of meaning-

ful inferences from a substantive perspective, defined by the researchers. Usually, the bare

minimum includes all the possible attribute-level combinations10. It should also include

all the subgroup analysis, balancing checks, and other quality check tests that researchers

usually perform.11 On the contrary, we recommend the more lenient Benjamini-Hochberg

method if the research is primarily exploratory. Here researchers need to specify the FDR.

For instance, the default FDR in many R packages is set at 0.05, meaning that 5% of the

“declared” positive findings will be purged as false positives. For the remaining types, we

recommend Ash. Researchers need to specify the mixture distribution they are going to

use.12 Setting the mixture distribution requires some prior knowledge of the subject matter.

However, because the number of hypothesis testing in most social science applications is not

so large, the corrected results do not diverge drastically when different mixture distributions

are used, as our simulation studies demonstrate.

In the analysis and writeup stage, uncorrected and corrected data should be included in

the paper regardless of the chosen method. Researchers should consider the false-positive

and the false-negative tradeoff in this particular application and justify the method of choice.

If any of the corrected and uncorrected results differ, the discrepancy should be described

and discussed explicitly. In summary, the steps in the checklist are intended to reduce

the researchers’ degrees of freedom when selecting different methods. Furthermore, it aids

researchers in incorporating multiple testing correction into the conjoint analysis routine in

a principled and transparent manner.

Multiple hypothesis testing may also be a problem with empirical studies using other

methods than conjoint designs. In fact, one of the major sources of publication bias is

the property of the frequentist hypothesis testing that the probability of false findings is

controlled. We focused on conjoint analysis in this paper because the number of hypotheses

10 Cross-attribute constraints will reduce the total number of tests. For example, the impossible combina-
tion of someone whose occupation is a doctor and education level is no formal education school should
not be included in the total number when determining the new significance level α̃ in Bonferroni correction.

11 A reviewer pointed out that some attributes or levels may be included in a conjoint design only to make
its profiles look real and therefore it may be more appropriate that estimates for such attributes/levels are
not counted as hypotheses to be tested. On the one hand, we agree that, if an attribute is used only for
that purpose and not in the study’s interest, the number of levels of the attribute can be excluded from the
number of hypotheses to be tested. On the other hand, we note that estimates for all levels of all attributes
are reported in most previous studies using conjoint surveys. If one excludes some attributes or levels from
hypotheses, statistical estimation of the marginal means or AMCEs should ignore those attributes or levels
entirely and the analysis is preregistered as such. Researchers also need to be cautious when including
attributes or levels that are not interested, because the estimates of the researchers’ interest depend on the
distribution of those non-interested attributes or levels (de la Cuesta, Egami and Imai, 2022).

12The ash function in the ashr package (version 2.2-47) supports uniform, normal, halfuniform, +uniform,
-uniform, and halfnormal distributions. For more information, see Stephens et al. (2020).
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to be tested is relatively unambiguous. Applying the correction methods we discussed to

studies where the number of statistical hypotheses varies over the stages of research, e.g.,

adding robustness checks to address reviewers’ comments, is much harder than to conjoint

designs. More research on multiple testing correction in the other contexts is warranted.
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