Factoraial Experiments and Interaction Effects

Yuki Shiraito

POLSCI 699 Statistical Methods in Political Research II University of Michigan

Factorial Design

- **•** Effects of multiple treatments
	- Example: candidate choice
		- **1** Partisanship
		- 2 Race
		- ³ Gender
		- ⁴ Policy
		- **5** Education
		- 6 . . .
- Simplest case: 2 *×* 2 factorial design
	- \bullet Units: $i = 1, \ldots, n$
	- \bullet Two treatments: $T_{1i} \in \{0, 1\}$ and $T_{2i} \in \{0, 1\}$
	- Potential outcomes: $(Y_i(0,0), Y_i(1,0), Y_i(0,1), Y_i(1,1))$
	- Independent, complete randomization of T_{1i} and T_{2i} : for all *i*, $(Y_i(0,0), Y_i(1,0), Y_i(0,1), Y_i(1,1)) \perp (T_{1i}, T_{2i})$ and $T_{1i} \perp T_{2i}$
	- Random sampling of units:
		- (*Yi*(0*,* ⁰)*, ^Yi*(1*,* ⁰)*, ^Yi*(0*,* ¹)*, ^Yi*(1*,* ¹)) ⁱ*.*i*.*d*. ∼ F*

Higher-order Example: Conjoint Design

Please read the descriptions of the potential immigrants carefully. Then, please indicate which
of the two immigrants you would personally prefer to see admitted to the United States.

Factorial Designs **Interaction Community** Communist Communist

Combination Effect

Population average combination effect (ACE): τ (**t**; **t**^{*′*}) \equiv $\mathbb{E}\left[Y_i(t_1, t_2) - Y_i(t'_1, t'_2)\right]$

where

$$
\mathbf{t} = \begin{pmatrix} t_1 \\ t_2 \end{pmatrix}, \quad \mathbf{t}' = \begin{pmatrix} t'_1 \\ t'_2 \end{pmatrix}
$$

and $t_1, t_2, t'_1, t'_2 \in \{0, 1\}$

Does NOT assume
\n
$$
\tau\left(\begin{pmatrix}1\\1\end{pmatrix};\begin{pmatrix}0\\0\end{pmatrix}\right) = \tau\left(\begin{pmatrix}1\\0\end{pmatrix};\begin{pmatrix}0\\0\end{pmatrix}\right) + \tau\left(\begin{pmatrix}0\\1\end{pmatrix};\begin{pmatrix}0\\0\end{pmatrix}\right)
$$
\nDifferentence-in-means estimator:

$$
\overbrace{\tau(\mathbf{t}; \mathbf{t}')}^{n}
$$

where 1*{·}* is the indicator function and *n***^t** is the number of observations with treatment combination **t**

- As the number of combinations $\uparrow \implies n_{\mathbf{t}}$ and $n_{\mathbf{t}'} \downarrow$
- All results (unbiasedness, variance estimation, regression, etc.) for diff-in-means in standard experiments hold
<u>Yuki Shiraito</u> **Yuki Shiraito Factorial Experiments** POLSCI 699 3/14
-

Factorial Designs **Interaction Contact Effects** Summary

Marginal Effect

- \bullet May be interested in the effects of the treatments separately
- Population average marginal effect (AME) of $T_k, k = 1, 2$: 1

$$
\tau_{k} \equiv \sum_{t=0} \mathbb{E}\left[\left(Y_{i} \left(T_{ki} = 1, T_{k'i} = t \right) - Y_{i} \left(T_{ki} = 0, T_{k'i} = t \right) \right) \right] \mathbb{P}\left(T_{k'i} = t \right)
$$

- $E.g., \tau_1 = \mathbb{E}\left[\sum_{t=0}^1 (Y_i(1,t) Y_i(0,t)) \mathbb{P}(T_{2i} = t)\right]$
- Weighted average of ACEs; weights are the probabilities of *T*2*ⁱ*
- *Estimand depends on the design*
- Difference-in-means estimator:

$$
\hat{\tau}_k = \frac{1}{n_{k1}} \sum_{i=1}^n Y_i \mathbf{1} \{ T_{ki} = 1 \} - \frac{1}{n_{k0}} \sum_{i=1}^n Y_i \mathbf{1} \{ T_{ki} = 0 \}
$$

where $n_{kt}, t=0,1$ is the number of units with $T_{ki}=t$

To prove unbiasedness, use:

E [1 *{T^k*

$$
1\{T_{ki}=t\}=1\{T_{ki}=t\}\sum_{t'=0}^{1}1\{T_{k'i}=t'\}
$$

[1\{T_{k'i}=t'\}]=\mathbb{P}(T_{k'i}=t')

 $\overline{1}$

Yuki Shiraito Factorial Experiments POLSCI 699 4 / 14

Factorial Designs **Interaction Community** Interaction Effects Summary Linear Regression for AME

Can we use linear regression?

Consider the population regression of Y_i on T_{1i} :

$$
(\alpha, \beta) \equiv \operatornamewithlimits{argmin}_{a,b} \mathbb{E}\left[\left(Y_i - a - bT_{1i}\right)^2\right]
$$

- *T*_{1*i*} is binary, so we know *α* + *βT*_{1*i*}</sub> = $\mathbb{E}[Y_i | T_{1i}]$
- Then,

$$
\alpha + \beta t = \mathbb{E}[Y_i | T_{1i} = t]
$$

\n
$$
= \mathbb{E}[Y_i | T_{1i} = t, T_{2i} = 0] \mathbb{P}(T_{2i} = 0)
$$

\n
$$
+ \mathbb{E}[Y_i | T_{1i} = t, T_{2i} = 1] \mathbb{P}(T_{2i} = 1) \quad \because T_{1i} \perp T_{2i}
$$

\n
$$
= \mathbb{E}[Y_i(t, 0)] \mathbb{P}(T_{2i} = 0)
$$

\n
$$
+ \mathbb{E}[Y_i(t, 1)] \mathbb{P}(T_{2i} = 1)
$$

\n
$$
\therefore (Y_i(0, 0), Y_i(1, 0), Y_i(0, 1), Y_i(1, 1)) \perp (T_{1i}, T_{2i})
$$

\n• Therefore, $\beta = \tau_1!$
\nEstimand of simple linear regression = AME

- Key is *T*1*ⁱ ⊥⊥ T*2*ⁱ* (will come back later)
- Robust variance estimation recommended Yuki Shiraito Factorial Experiments POLSCI 699 5 / 14

 \bullet

Factorial Designs **Interaction Contact Contact**

Multiple Hypothesis Testing

Two types of errors statistical tests can make:

- Test one hypothesis, *α ≡* P(Reject null *|* Null is true) = 0*.*05
- Family-Wise Error Rate *≡* P(At least one true null is rejected)
- \bullet Test 10 true null hypotheses simultaneously with *α* = 0.05

FWER = 1 −
$$
(1 - a)^{10}
$$
 ≈ .4

Multiple Testing Example Testing Interaction Effects Summary

Quantifying the Problem by Simulations

- If AMCE is zero, in how many samples do you get false findings?
- Two scenarios for 41 attribute levels:
	- ¹ No *individual* effect
	- ² Nonzero individual effect, but zero *average* effect
- Number of samples for each number of false findings:

Multiple Testing **Interaction Effects** Summary

1 10 20 30 40 50
Number of Tests (α = 0.01)

0

Bonferroni Correction

- Setup
	- *m*: # of tests
	- *pj , j* = 1*, . . . , m*: *p*-value obtained for test *j*
	- m_0 : # of true null hypotheses (unknown)
	- m_1 : # of false null hypotheses (unknown), $m_0 + m_1 = m$
- Bonferroni correction: for each *j*, reject null if *p^j ≤ α/m*
- FWER is controlled:

1 10 20 30 40 50
Number of Tests (α = 0.1)

0

1 10 20 30 40 50
Number of Tests (α = 0.05)

The Victor Constitution Constitution Constitution Constitution Factorial Experiments POLSCI 699 8/14

0

Benjamini-Hochberg Procedure

• Number of discoveries

- False Discovery Rate *≡* E [*V/R*] and 0 if *R* = 0
	- \bullet If $m_0 = m$, FDR = FWER
	- If *m*⁰ *< m*, FDR *≤* FWER *❀* controling FDR is less stringent

Benjamini-Hochberg procedure:

- ¹ set desired FDR *q*
- 2 Reorder *p*-values from smallest to largest, $p_{(1)} \leq \cdots \leq p_{(m)}$
- **3** Find the largest *i* such that $p(i) \leq iq/m$
- ⁴ Reject null in tests (1)*, . . . ,*(*i*)
- Example: *p*-values (*.*012*, .*013*, .*016*, .*023*, .*033*, .*047*, .*33*, .*44)
	- **1** let $q = .05$
	- ² *.*023 is the largest: *.*023 *≤* 4 *× .*05*/*8
	- ³ reject 4 nulls, instead of 6

Interaction Effects

- When there multiple treatments, they may *interact*
- Population average interaction effect (AIE):
- $\xi(\mathbf{t};\mathbf{t}') \equiv \mathbb{E}\left[Y_{i}\left(t_{1}, t_{2}\right) Y_{i}\left(t_{1}', t_{2}\right) Y_{i}\left(t_{1}, t_{2}'\right) + Y_{i}\left(t_{1}', t_{2}'\right)\right]$
- Interactive effect interpretation:

$$
\xi(\mathbf{t}; \mathbf{t}') = \underbrace{\mathbb{E}\left[Y_i(t_1, t_2) - Y_i(t'_1, t'_2)\right]}_{\tau(\mathbf{t}; \mathbf{t}')} - \underbrace{\left(\mathbb{E}\left[Y_i(t'_1, t_2) - Y_i(t'_1, t'_2)\right] + \mathbb{E}\left[Y_i(t_1, t'_2) - Y_i(t'_1, t'_2)\right]\right)}_{\text{sum of the effect of each treatment}}
$$

- "Additional effect of combining the two treatments"
- Conditional effect interpretation:

$$
\xi(\mathbf{t}; \mathbf{t}') = \underbrace{\mathbb{E}\left[Y_{i}(t_{1}, t_{2}) - Y_{i}(t_{1}, t_{2}')\right]}_{\text{PATE of } T_{2} \text{ when } T_{1} = t_{1}} - \underbrace{\mathbb{E}\left[Y_{i}(t'_{1}, t_{2}) - Y_{i}(t'_{1}, t'_{2})\right]}_{\text{PATE of } T_{2} \text{ when } T_{1} = t_{1}'}
$$
\n
$$
= \underbrace{\mathbb{E}\left[Y_{i}(t_{1}, t_{2}) - Y_{i}(t'_{1}, t_{2})\right]}_{\text{PATE of } T_{2} \text{ when } T_{1} = t_{1}'}
$$

 \overline{PATE} of T_1 when $T_2=t_2$ PATE of T_1 when $T_2=t'_2$ "How does the effect of a treatment depend on the other?"

Conditional Effects

Factorial Designs **Interaction Effects** Summary

Hainmueller et. al. (2014)

Yuki Shiraito Factorial Experiments POLSCI 699 11 / 14

Linear Regression and Interaction

"Saturated" model: indicator variable for each treatment combination

$$
Y_i = \delta_{00} 1\{T_{1i} = 0, T_{2i} = 0\} + \delta_{01} 1\{T_{1i} = 0, T_{2i} = 1\} + \delta_{10} 1\{T_{1i} = 1, T_{2i} = 0\} + \delta_{11} 1\{T_{1i} = 1, T_{2i} = 1\} + \varepsilon_i
$$

- \bullet Saturated model = conditional expectation function
	- $\mathbb{E}\left[Y_{i}\mid T_{1i}=0,T_{2i}=0\right]=\delta_{00},\quad \mathbb{E}\left[Y_{i}\mid T_{1i}=0,T_{2i}=1\right]=\delta_{01},$ $\mathbb{E}[Y_i | T_{1i} = 1, T_{2i} = 0] = \delta_{10}, \quad \mathbb{E}[Y_i | T_{1i} = 1, T_{2i} = 1] = \delta_{11}$
- Under randomization of (T_{1i},T_{2i}) , parameters are causal: they correspond to the expectation of potential outcomes
- CEF is linear

$$
\mathbb{E}[Y_i | T_{1i}, T_{2i}] = \alpha + \beta_1 T_{1i} + \beta_2 T_{2i} + \beta_3 T_{1i} T_{2i}
$$

where

$$
\alpha = \delta_{00}, \, \beta_1 = \delta_{10} - \delta_{00}, \, \beta_2 = \delta_{01} - \delta_{00}, \text{ and } \newline \beta_3 = \delta_{11} - \delta_{10} - \delta_{01} + \delta_{00}
$$

Interpretation of Interaction Terms

OLS estimator identifies $(a, \underline{\beta}_1, \beta_2, \beta_3)$:

$$
(\alpha, \beta_1, \beta_2, \beta_3) = \underset{a, b_1, b_2, b_3}{\text{argmin}} \mathbb{E}\left[(Y_i - a - b_1 T_{1i} - b_2 T_{2i} - b_3 T_{1i} T_{2i})^2 \right]
$$

$$
(\hat{\alpha}, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3) \equiv \operatorname*{argmin}_{a, b_1, b_2, b_3} \sum_{i=1}^n (Y_i - a - b_1 T_{1i} - b_2 T_{2i} - b_3 T_{1i} T_{2i})^2
$$

- β_3 is an AIE: $\beta_3 = \delta_{11} \delta_{10} \delta_{01} + \delta_{00} = \xi((1, 1)^{\top}; (0, 0)^{\top})$
- $\boldsymbol{\beta}_1$ and $\boldsymbol{\beta}_2$ are often called "main effects," but...

$$
\beta_1 = \delta_{10} - \delta_{00} = \mathbb{E} [Y_i(1,0)] - \mathbb{E} [Y_i(0,0)]
$$

$$
\beta_2 = \delta_{01} - \delta_{00} = \mathbb{E}[Y_i(0,1)] - \mathbb{E}[Y_i(0,0)]
$$

- they are *conditional* effects when the other treatment takes 0
- Estimation of some ACEs requires addition of parameters, e.g.,

$$
\tau\left(\begin{pmatrix}1\\1\end{pmatrix};\begin{pmatrix}1\\0\end{pmatrix}\right) = \hat{\beta}_2 + \hat{\beta}_3
$$

❀ need inference on joint sampling distribution of parameters: multiple regression

Factorial Designs Multiple Testing Interaction Effects **Summary**

Summary of First Five Weeks

- Potential outcomes framework for causal inference:
	- **1** Treatment effect is defined by difference b/w potential outcomes
	- 2 Only one potential outcome per unit is observed
	- ³ Average, not individual, treatment effects are of interest
- Randomized experiments:
	- ¹ Randomization =*⇒* potential outcomes *⊥⊥* treatment =*⇒* mean observed outcomes = mean potential outcomes
	- ² Variance of potential outcome for each treatment condition
- Linear regression for experimental data:
	- **1** Linearity as consequence of design, not assumption
	- ² Correspondence between causal and regression parameters
	- ³ Variance estimation from design-based perspective
- Some advanced topics I could not cover:
	- **1** Permutation tests and Fisher's sharp null
	- 2 Stratified/pairwise randomized experiments
	- ³ Average marginal interaction effects