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Factorial Designs

Factorial Design

e Effects of multiple treatments
e Example: candidate choice
@ Partisanship

@ Race
© Gender

@ Policy
© Education

e Simplest case: 2 x 2 factorial design
e Units:i=1,...,n
e Two treatments: Tq; € {0,1} and Ty, € {0, 1}
e Potential outcomes: (Y;(0,0),Y;(1,0),Y;(0,1),Y;(1,1))
e Independent, complete randomization of Ty; and Ty;: for all j,
(YI(O> 0)7 Y/(1 ’ 0)7 YI(O7 1)7 YI(1 ’ 1)) 4L (T1i7 T2i) and T‘Ii 1 T2i

e Random sampling of units:
(¥i(0,0),¥i(1,0),%i(0,1), ¥;(1,1)) "= F
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Factorial Designs

Higher-order Example: Conjoint Design

Please read the

ofthe p

immigrants

Immigrant 1

Immigrant 2

Prior Trips to the U.S.

Entered the U.S. once before

Entered the U.S. once before

on a tourist visa on a tourist visa
Reunite with family members Reunite with family members
Reason for Appiication alreadyinU.S. akreadyin US
Country of Origin Mexico Iraq
During admission interview, During admission interview,
Language Skills this applicant spoke fluent this applicant spoke fluent
English English
Profession Child care provider Teacher
8 One to two years of job Three to five years of job
Job Ex ce training and experience training and experience
Does not have a contract with
Employment Plans aU.S. employer but has done | *V!1100K for work after amving
job interviews
Equi toc two E toc a
Education Level years of colege n the U.S. college degreeinthe US
Gender

Female

Male
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y. Then, please indicate which
of the two Irnmlgrants you would plrsonally P'.'OY to see admitted to the United States.
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Factorial Designs

Combination Effect

@ Population average combination effect (ACE):
T(tt) =E[Yi(tr,t2) =Y (t),15)]
where

and tq,tp,t,t, € {0,1}
T assume

S“ﬁ((});(g)) = ((6):(6)) 7 (():(6))

° D|ﬁerence In- means estimator:
T(tt) = ZY1{T1,_t1,T2, tz}——ZY1{T1,_t’1,T2,_ t))

where 1{- } is the indicator function and ny is the number of
observations with treatment combination t
e Asthe number of combinations t = nyand ny |
e All results (unbiasedness, variance estimation, regression, etc.) for
diff-in-means in standard experiments hold
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Factorial Designs

Marginal Effect

e May be interested in the effects of the treatments separately
@ Population average marginal effect (AME) of T,k = 1, 2:

1
=Y E[(Yi(Ty=1Tei=1t)=Yi(Ty=0,Te; =1))] P(Te; = 1)
t=0

° Eg. i =E[LLo (i (1,0 = Yi(0,6) )P (Ty = 1)
e Weighted average of ACEs; weights are the probabilities of T
e Estimand depends on the design

e Difference-in-means estimator:

R 1 < 1 <
Tk:m;m {Tk,-:1}—%;mm,~=0}

where ny;, t = 0, 1 is the number of units with Tj; =t
e To prove unbiasedness, use:

1
1 {Tki = t} =1 {Tki = t} Z 1 {Tk/,‘ = t/}
t'=0
E “ {Tk/i = t/}] = P(Tk/,‘ = t/)
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Factorial Designs

Linear Regression for AME

e Can we use linear regression?
e Consider the population regression of Y; on Ty;:
(a,B) = argminE [(Y, —a-— bT1,-)2]
a,b
e Ty;is binary, so we know a + BTy = E[Y; | T4/
e Then,
a+ Bt =E[Y; | T =1]
=E[Y; | Thi =1, T2 = O]P(T = 0)
—|—E[Y, ‘ T1,‘:t,T2,'= 1]P(T2,: 1) T LTy
=E[Y;(t,0)]P(T2 = 0)
TEMi(t, DP(T2i = 1)
= (Yi(0,0),Y(1,0),Yi(0,1),Yi(1,1)) L (Ta, T2)
e Therefore, B = 74!
e Estimand of simple linear regression = AME
e Keyis Ty; L Ty; (will come back later)

e Robust variance estimation recommended
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Multiple Testing

Multiple Hypothesis Testing

e Two types of errors statistical tests can make:
| Reject Hg Retain Hg
Hp is true | Type | error Correct
Ho is false Correct  Typell error

@ Test one hypothesis, a = P(Reject null | Null is true) = 0.05
@ Family-Wise Error Rate = P(At least one true null is rejected)

@ Test 10 true null hypotheses simultaneously with a = 0.05
FWER=1-(1-0a)"%~ 4

1 1 1
084 08 084
o 06 064 064
u
2
& o4 044 044
02 02 02 /
0 0 0
——T——T— ——T——T— ——T——T—
1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50
Number of Tests (a = 0.1) Number of Tests (a = 0.05) Number of Tests (a = 0.01)
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Multiple Testing

Quantifying the Problem by Simulations

e If AMCE is zero, in how many samples do you get false findings?
e Two scenarios for 41 attribute levels:

@ No individual effect
@ Nonzero individual effect, but zero average effect

e Number of samples for each number of false findings:

300 300

200 200

| I||I 100 |‘|II
0 II.____ 0 I I.-—_ff
513 3 4 5 & 6 1 5 3 4 5 6 7 8

Number of data sets
S
8

7 8 9§ 10 § 10 11 12
Number of Significant Coefficients Per Test Number of Significant Coefficients Per Test
Zero individual MCE Heterogeneous MCE, zero AMCE

Liu and Shiraito (2023)
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Multiple Testing

Bonferroni Correction

e Setup

e m: # of tests

e pj,j=1,...,m: p-value obtained for test

e my: # of true null hypotheses (unknown)

e my: # of false null hypotheses (unknown), mg + m; = m
@ Bonferroni correction: for each j, reject null if p; < a/m
e FWER is controlled:

P U Pjég < >y P(Pjé%>:mogéa

. m . m
{j:true null} {j:true null}
014 01 01
o
“E‘o.os g 0.05 frrees 005
4 0 4
— T —
1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50
Number of Tests (a = 0.1) Number of Tests (a = 0.05) Number of Tests (a = 0.01)
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Multiple Testing

Benjamini-Hochberg Procedure

@ Number of discoveries

Reject Hy Retain Hp | Total
Hyg is true 4 U mg
Hg is false S T m
Total R m —R m

e False Discovery Rate =E[V/R]and 0if R =0
e Ifmg =m, FDR = FWER
e If mg < m, FDR < FWER ~» controling FDR is less stringent

@ Benjamini-Hochberg procedure:
@ setdesired FDR g
@ Reorder p-values from smallest to largest, Py < < Pm)
© Find the largestisuch thatpg) <ig/m
@ Rejectnullintests (1),...,(i)
e Example: p-values (.012,.013, .016, .023, .033, .047, .33, .44)
@ letg=.05
@ .023isthe largest: .023 <4 x .05/8
© reject 4 nulls, instead of 6
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Interaction Effects

Interaction Effects

@ When there multiple treatments, they may interact
@ Population average interaction effect (AIE):
E(tY) =E[Y(t,t2) = Vi (th.t2) = Vi (tr.t5) + Vi (th,15)]
e Interactive effect interpretation:
§(tt) =E[Yi(t1,t2) = Vi (t),15)]
T(t;t)

— B[V (4, t2) = Yi (4, 85)] +E Y (11, 8) = Vi (4, 85)])

sum of the effect of each treatment
e "Additional effect of combining the two treatments”

e Conditional effect interpretation:
E(tt) =E[Yi(th,t2) =Y (t1,15)| —E[Yi (t7,12) = Vi (th,85)]

PATE of T, when T1=t4 PATE of T, when Ty =t
=E[Y(t1,t2) = Vi (1, 02)] —E[Y; (t1,15) = Vi (t1,13)]
PATE of T1 when To=t» PATE of T; when T2:t’2

e "How does the effect of a treatment depend on the other?”
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Interaction Effects

Conditional Effects

Immigrant Has Contract with an Employer Immigrant Has No Plans to Look for Work
Gender:

e

A

Education:
ng formay
41

g(
<% lege
°°'§§aé W

Langucre; lish,

broken Efiglish ——
tried English but unable ——
used intérpreter —

Orig
ermany
ance

iopines
ohd

dia
ina
udan
Somalia
raq
Profession:
janitor
ClFeare provider
financial analyst
construction worker
teacher
compuiter programmer
research scientist
doctor

Job exgenence
non
1-2 years
3-5 years
-1

Application reason:
founite with amily

—
scape pe:!scuuon —_—
Prior trips to U.S.:
nev
once as ——
rx as( urist —
Shemonths wih famil —
once wio authorization —_— |
-2 0 2

Change in Pr(Immigrant Preferred for Admission to U.S.)

Hainmueller et. al. (2014)
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Interaction Effects

Linear Regression and Interaction

@ "Saturated” model: indicator variable for each treatment
combination

Yi =600 1{T1i = 0,T2i = 0} + 601 1{T1; = 0, T = 1}
+610M{T1i=1T2i =0} + 61 H{Ti=1,Ty =1} + &
e Saturated model = conditional expectation function
E[Yi | T1j=0,Ty =0] =60, E[Yi|T1;=0,Ty=1] =001,
EYi [Ty =1,Ty=0]=0610, E[Yi|T1i=1Ty=1=0n
e Under randomization of (Ty;, Ty;), parameters are causal: they
correspond to the expectation of potential outcomes
e CEFislinear
EYi | T, Tal = a+ By Thi+ BaToi + B3TiTai
where
a = 890, By = 610 — 600, By = 01 — oo, and
B3 =611 — 610 — G601 + S0
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Interaction Effects

Interpretation of Interaction Terms

@ OLS estimator identifies (a, B4, B, B3):
(a,B1,B,: B3) = argmin E [(Yi —a—biTy —baTy — b3T1iT2i)2}

a7b1 7b27b3

(6,81, By, B3) = argmin > (Vi —a — by Ty; — baToi — b3TyiTa)°
a,b1,b2,b3 i=1
@ Biisan AlE: B3 =811 — 819 — 801 + 600 =& ((1,1)7;(0,0)7)
@ 3, and B, are often called “main effects,” but...
B1=0610—000 = E[Yi(1,0)] - E[¥i(0,0)]
By =601 =00 =E[Yj(0,1)] — E[¥i(0,0)]
they are conditional effects when the other treatment takes 0
e Estimation of some ACEs requires addition of parameters, e.g.,

We 5 L
(():(0)) = b
~» need inference on joint sampling distribution of parameters:

multiple regression
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Summary of First Five Weeks

@ Potential outcomes framework for causal inference:
@ Treatment effect is defined by difference b/w potential outcomes
@ Only one potential outcome per unit is observed
© Average, not individual, treatment effects are of interest
e Randomized experiments:
@ Randomization = potential outcomes L treatment = mean
observed outcomes = mean potential outcomes
@ Variance of potential outcome for each treatment condition
@ Linear regression for experimental data:
@ Linearity as consequence of design, not assumption
@ Correspondence between causal and regression parameters
© Variance estimation from design-based perspective
@ Some advanced topics | could not cover:
@ Permutation tests and Fisher's sharp null

@ Stratified/pairwise randomized experiments
© Average marginal interaction effects
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