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Factorial Designs Multiple Testing Interaction Effects Summary

Factorial Design
Effects of multiple treatments

Example: candidate choice
1 Partisanship
2 Race
3 Gender
4 Policy
5 Education
6

...

Simplest case: 2× 2 factorial design
Units: i = 1, . . . ,n
Two treatments: T1i ∈ {0,1} and T2i ∈ {0,1}
Potential outcomes: (Yi(0,0), Yi(1,0), Yi(0,1), Yi(1,1))
Independent, complete randomization of T1i and T2i: for all i,

(Yi(0,0), Yi(1,0), Yi(0,1), Yi(1,1)) ⊥⊥ (T1i, T2i) and T1i ⊥⊥ T2i
Random sampling of units:
(Yi(0,0), Yi(1,0), Yi(0,1), Yi(1,1)) i.i.d.∼ F

Yuki Shiraito Factorial Experiments POLSCI 699 1 / 14



Factorial Designs Multiple Testing Interaction Effects Summary

Higher-order Example: Conjoint Design

Hainmueller et. al. (2014)
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Combination Effect
Population average combination effect (ACE):

τ
(
t; t′

)
≡ E

[
Yi (t1, t2)− Yi

(
t′1, t′2

)]
where

t =

(t1
t2

)
, t′ =

(t′1
t′2

)
and t1, t2, t′1, t′2 ∈ {0,1}
Does NOT assume
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Difference-in-means estimator:
τ̂ (t; t′) = 1

nt

n∑
i=1

Yi1 {T1i = t1, T2i = t2}−
1
nt′

n∑
i=1

Yi1
{
T1i = t′1, T2i = t′2

}
where 1{·} is the indicator function and nt is the number of
observations with treatment combination t

As the number of combinations ↑ =⇒ nt and nt′ ↓
All results (unbiasedness, variance estimation, regression, etc.) for
diff-in-means in standard experiments hold

Yuki Shiraito Factorial Experiments POLSCI 699 3 / 14



Factorial Designs Multiple Testing Interaction Effects Summary

Marginal Effect
May be interested in the effects of the treatments separately
Population average marginal effect (AME) of Tk, k = 1,2:

τk ≡
1∑

t=0
E
[(
Yi (Tki = 1, Tk′i = t)− Yi (Tki = 0, Tk′i = t)

)]
P (Tk′i = t)

E.g., τ1 = E
[∑1

t=0
(
Yi (1, t)− Yi (0, t)

)
P (T2i = t)

]
Weighted average of ACEs; weights are the probabilities of T2i
Estimand depends on the design

Difference-in-means estimator:
τ̂k =

1
nk1

n∑
i=1

Yi1 {Tki = 1} − 1
nk0

n∑
i=1

Yi1 {Tki = 0}

where nkt, t = 0,1 is the number of units with Tki = t
To prove unbiasedness, use:

1 {Tki = t} = 1 {Tki = t}
1∑

t′=0
1 {Tk′i = t′}

E [1 {Tk′i = t′}] = P (Tk′i = t′)
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Linear Regression for AME
Can we use linear regression?
Consider the population regression of Yi on T1i:

(α,β) ≡ argmin
a,b

E
[(
Yi − a− bT1i

)2]
T1i is binary, so we know α+ βT1i = E[Yi | T1i]
Then,

α+ βt =E[Yi | T1i = t]
=E[Yi | T1i = t, T2i = 0]P(T2i = 0)
+ E[Yi | T1i = t, T2i = 1]P(T2i = 1) ∵ T1i ⊥⊥ T2i

=E[Yi(t,0)]P(T2i = 0)
+ E[Yi(t,1)]P(T2i = 1)
∵ (Yi(0,0), Yi(1,0), Yi(0,1), Yi(1,1)) ⊥⊥ (T1i, T2i)

Therefore, β = τ1!
Estimand of simple linear regression = AME

Key is T1i ⊥⊥ T2i (will come back later)
Robust variance estimation recommended
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Multiple Hypothesis Testing
Two types of errors statistical tests can make:

Reject H0 Retain H0
H0 is true Type I error Correct
H0 is false Correct Type II error

Test one hypothesis, α ≡ P(Reject null | Null is true) = 0.05
Family-Wise Error Rate ≡ P(At least one true null is rejected)
Test 10 true null hypotheses simultaneously with α = 0.05

FWER = 1− (1− α)10 ≈ .4
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Quantifying the Problem by Simulations
If AMCE is zero, in how many samples do you get false findings?
Two scenarios for 41 attribute levels:

1 No individual effect
2 Nonzero individual effect, but zero average effect

Number of samples for each number of false findings:
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Heterogeneous MCE, zero AMCE
Liu and Shiraito (2023)
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Bonferroni Correction
Setup

m: # of tests
pj, j = 1, . . . ,m: p-value obtained for test j
m0: # of true null hypotheses (unknown)
m1: # of false null hypotheses (unknown),m0 +m1 = m

Bonferroni correction: for each j, reject null if pj ≤ α/m
FWER is controlled:

P

 ⋃
{j:true null}

pj ≤
α
m

 ≤
∑

{j:true null}
P
(
pj ≤

α
m
)
= m0

α
m ≤ α
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Benjamini-Hochberg Procedure
Number of discoveries

Reject H0 Retain H0 Total
H0 is true V U m0
H0 is false S T m1

Total R m− R m
False Discovery Rate ≡ E [V/R] and 0 if R = 0

Ifm0 = m, FDR = FWER
Ifm0 < m, FDR ≤ FWER; controling FDR is less stringent

Benjamini-Hochberg procedure:
1 set desired FDR q
2 Reorder p-values from smallest to largest, p(1) ≤ · · · ≤ p(m)

3 Find the largest i such that p(i) ≤ iq/m
4 Reject null in tests (1), . . . , (i)

Example: p-values (.012, .013, .016, .023, .033, .047, .33, .44)
1 let q = .05
2 .023 is the largest: .023 ≤ 4× .05/8
3 reject 4 nulls, instead of 6
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Interaction Effects
When there multiple treatments, they may interact
Population average interaction effect (AIE):

ξ
(
t; t′

)
≡ E

[
Yi (t1, t2)− Yi

(
t′1, t2

)
− Yi

(
t1, t′2

)
+ Yi

(
t′1, t′2

)]
Interactive effect interpretation:
ξ
(
t; t′

)
=E

[
Yi (t1, t2)− Yi

(
t′1, t′2

)]︸ ︷︷ ︸
τ(t;t′)

−
(
E
[
Yi
(
t′1, t2

)
− Yi

(
t′1, t′2

)]
+ E

[
Yi
(
t1, t′2

)
− Yi

(
t′1, t′2

)])︸ ︷︷ ︸
sum of the effect of each treatment

“Additional effect of combining the two treatments”
Conditional effect interpretation:

ξ
(
t; t′

)
= E

[
Yi (t1, t2)− Yi

(
t1, t′2

)]︸ ︷︷ ︸
PATE of T2 when T1=t1

−E
[
Yi
(
t′1, t2

)
− Yi

(
t′1, t′2

)]︸ ︷︷ ︸
PATE of T2 when T1=t′1

= E
[
Yi (t1, t2)− Yi

(
t′1, t2

)]︸ ︷︷ ︸
PATE of T1 when T2=t2

−E
[
Yi
(
t1, t′2

)
− Yi

(
t′1, t′2

)]︸ ︷︷ ︸
PATE of T1 when T2=t′2

“How does the effect of a treatment depend on the other?”
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Conditional Effects

Hainmueller et. al. (2014)
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Linear Regression and Interaction
“Saturated” model: indicator variable for each treatment
combination

Yi =δ001{T1i = 0, T2i = 0}+ δ011{T1i = 0, T2i = 1}
+ δ101{T1i = 1, T2i = 0}+ δ111{T1i = 1, T2i = 1}+ εi

Saturated model = conditional expectation function
E [Yi | T1i = 0, T2i = 0] = δ00, E [Yi | T1i = 0, T2i = 1] = δ01,

E [Yi | T1i = 1, T2i = 0] = δ10, E [Yi | T1i = 1, T2i = 1] = δ11
Under randomization of (T1i, T2i), parameters are causal: they
correspond to the expectation of potential outcomes
CEF is linear

E [Yi | T1i, T2i] = α+ β1T1i + β2T2i + β3T1iT2i
where

α = δ00, β1 = δ10 − δ00, β2 = δ01 − δ00, and
β3 = δ11 − δ10 − δ01 + δ00
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Interpretation of Interaction Terms
OLS estimator identifies (α,β1,β2,β3):
(α,β1,β2,β3) = argmin

a,b1,b2,b3
E
[
(Yi − a− b1T1i − b2T2i − b3T1iT2i)2

]
(α̂, β̂1, β̂2, β̂3) ≡ argmin

a,b1,b2,b3

n∑
i=1

(Yi − a− b1T1i − b2T2i − b3T1iT2i)2

β3 is an AIE: β3 = δ11 − δ10 − δ01 + δ00 = ξ
(
(1,1)⊤; (0,0)⊤

)
β1 and β2 are often called “main effects,” but...

β1 = δ10 − δ00 = E [Yi(1,0)]− E [Yi(0,0)]
β2 = δ01 − δ00 = E [Yi(0,1)]− E [Yi(0,0)]

they are conditional effects when the other treatment takes 0
Estimation of some ACEs requires addition of parameters, e.g.,

̂
τ
((1

1

)
;

(1
0

))
= β̂2 + β̂3

; need inference on joint sampling distribution of parameters:
multiple regression
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Summary of First Five Weeks
Potential outcomes framework for causal inference:

1 Treatment effect is defined by difference b/w potential outcomes
2 Only one potential outcome per unit is observed
3 Average, not individual, treatment effects are of interest

Randomized experiments:
1 Randomization =⇒ potential outcomes ⊥⊥ treatment =⇒ mean

observed outcomes =mean potential outcomes
2 Variance of potential outcome for each treatment condition

Linear regression for experimental data:
1 Linearity as consequence of design, not assumption
2 Correspondence between causal and regression parameters
3 Variance estimation from design-based perspective

Some advanced topics I could not cover:
1 Permutation tests and Fisher’s sharp null
2 Stratified/pairwise randomized experiments
3 Average marginal interaction effects
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