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Overview
Statistical Inference: Overview

@ Statistical model:
@ Assumption about the world, Fx
@ Data, (X4,...,X,), form a random sample from Fy
@ Estimand, what we want to know about Fx:
@ Population moments, e.g., E[X], V(X)
@ Parameters of distribution, 8 if Fx is written as Fx(x; 6)
@ Estimation:
e Define an estimator or statistic, T, = r(Xq,...,Xp)
Sampling distribution:
e Theoretical distribution of T, across samples
e Only one realization of T, in one sample
e Theoretical because it depends on Fx (and 6)

Exact inference:
e Given sample size n
e Sampling distribution of T, derived from Fx
Approximate inference:
e Asymptotics: Convergence as n — oo
e Sampling distribution of lim,,_, T, approximated via LLN and CLT
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Exact

Method of Moments Estimator

e Method of moments estimator: Let 8 be a vector of k estimands
and suppose that the kth moment of Fx is written as a function of
B, E[X] = n,(0). The method of moments (MM) estimator O is
the solution for 6 to the system of equations

N1 (6) = My,

N () = My
@ MM estimator of the population mean y and variance o

o ﬁn = %Z?:1 Xi ) 5
Q o’ = %27:1 X7 — (% Z?:1 X/) = %ZL (Xi - %ZF:1 X/)

e Intuitive: Replace population moments with sample moments
e Simple: Not necessarily require assumptions on distribution Fy
e What if more equations than estimands?

e E.g., Poisson distribution: A = E[X] = V(X)

e Incorporate p.(d.)f. into estimator ~» MLE

e Finding the "best” value ~~ GMM

Yuki Shirafo POLSCIS 2719

2.



Exact

Exact Inference on MM Estimator

e We know the mean and variance of j,.:

o E[f,] = p, V(7,) = 0%/n
e For any n, without any parametric assumptions

d, is unbiased: E[u,] = u

Is 02,, unbiased?

— 2

1 < - ~ o
~3 K=’ =00+ (i, —p)2 e 0? =E [0%] +
i=1

02, is biased: E [ozn} = %02
Unbiased variance:
2 _ _ 1 ~
o s; =107 = o L (X — 1)
o E[s?] = -2 E[o?,] = 0?

n—1
e Again for any n, without any parametric assumptions

Can we find the sampling distribution of 02 or s2?
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Exact

Exact Sampling Distribution of MM Estimator

e We need parametric assumptions for further exact inference:
o Well known if Fx is Gaussian ~ t-statistic
e Fx is Bernoulli
i.d. ~
o Xi,.... Xo " N(p,0%) = i, ~ N (p,0%/n)
e Sampling dlstrlbutlon of sample/unbiased variance:

~n—1 n —
E Xi—p,)" = s2 =502, ~ x2
2 g2 °n o2 Xn—1

° Xn 1is the Ch/ -squared distribution with degrees of freedom n — 1
° X1 =Gamma (°3',3)
e Sum of the squares of n — 1 independent Gaussian r.v.s

Proof. Assume p = 0 since X; + ,u (4, +y) forany y

@ 3L X=Xl (Xi—,)" +

@ Ifx " N(p,02), S0, (X — /Jn) and pn are independent

@ Weknow L, 37 X2 ~ x2and L2 ~ x?

@ We use the m.g.f.s of these to get the m.g.f. of % S (Xi— ,ﬁn)z
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Exact
t-statistic

Now we know the sampling distributions of [i,, and ”0;215,%

@ Problem: Two unknown parameters, y and o?
@ t-statistic: For a fixed number 8, the t-statistic is defined as
b,—06
Tn(6) = Vn(p, —6)
S5
° Student’st distribution: Let Z ~ N(0,1) and V ~ x2_,. Then,
W follows the t-distribution with n — 1 degrees of freedom.
e If 8 =y, 7,(0) follows Student's t-distribution:
~N(0,1)
—_—

n .
\E(un—u) L

H)
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Exact

Hypothesis Testing: The t-test

@ Assuming 6 = u, we know how likely a value of 7,(8) is
e Hypothesis Testing:
@ Have a hypothesis that y = 8¢ (null hypothesis)
© Compute T7,(6))
© Is the value of 7,(8¢) consistent with the null?
@ What “consistent” means:
e The value of 7,(8p) is "not unlikely” under the null
e The sampling distribution ~ how likely a value is
e Range from the § quantile to the 1 — § quantile is not unlikely
Testing procedure:
e Reject (accept) the nullif 7,(6¢) ¢ (6)[t;71,gvtzf1,17g}
e i, 5:the 6 quantile of the t-distribution

Th(6) is an r.v. ~» error is always possible

e Type | error (false positive): Reject the null when p = 6

e Type ll error (false negative): Accept the null when u # 8¢
Probability of Type | error across samples is a
Multiple testing problem:

e If you run testing many times, you reject the null in some tests
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Exact

Interval Estimation

e We know [, (estimator) is not exactly equal to u (estimand)
@ Instead of one value, use an interval to account for randomness
@ Interval estimation:

e Getthe inverse of the acceptance region of the t-test

T(60)>n15<:>60<F’n_\/*n16<:>60<:un \/ﬁtnf1,175

° {ﬁn + 2t gy Hy+ 2 nH‘;} is the confidence interval

e Confidence intervals are random intervals
e Bounds have sampling distributions
Intervals vary across samples

P(ﬁ,ﬁ—ft* <u§ﬁn—|—\rt* )_1—0

vn n=1%5 vn n=1,1—
e Correct: Across samples, the C.l.s cover u with probability 1 — a
e Wrong: A given C.I. contains u with probability 1 — a
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Asymptotic

Approximate Inference

@ In exact inference, we need to assume data distribution Fx

e We may not know a reasonable parametric assumption on Fx

e Derived sampling distribution may not be in a well known family
e Asymptotic inference: Sampling distributions are approximated
by the limit as sample size n approaches oo

What is the limit of r.v.s?

Limit of a sequence: Let {x,}7 ; be a sequence of real numbers.
The limit of sequence x,, written by lim,_, s X, = x Or x, — X, is

lim x, = x &5 Ve > 0 IN s.t. Ixn —x| < eforn>N

° Convepgemﬁce in probability: Let {X,}7° , be a sequence of r.v.s.
X, converges in probability to an r.v. X if and only if forany € > 0

lim P(|X, — X| > &) = 0.
n—o00

We write X, 2 X or plim,, , . X, = X
e Recall that X, is random but P(]X, — X| > €) is not
e Consider P(|]X, — X| > €) as a sequence, and its limitis 0
e X can be a constant
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Asymptotic

Law of Large Numbers

e Does estimator T, approach estimand 6 as n approaches co?
e Consistency: T, is a consistent estimator of 6 if T, L)
e As nincreases, probability that T, is away from 6 vanishes
e Consistency neither implies or is implied by unbiasedness
e Weak law of large numbers (LLN): Let X1, ..., X, form a random

sample from Fx with a finite second moment. Then,
n

_ 1 P
Xo= - Z;X" 2 EX]
=
e Powerful tool to establish consistency of an estimator
e [, is a consistent estimator of
e Continuous mapping theorem: Let g be a continuous function.

Then, X, 5 X implies that g(X,,) = g(X)
e If Fx has a finite fourth moment, 85,1 is a consistent estimator of 02
2
1 ¢ 2 P 2 1 ¢ : P 2
2 2% S B ( ;x) 2 (EX)
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Asymptotic

Proof of LLN

e Markov inequality: For any r.v. X and constanta > 0,

B(X) > ) < “ 00
Proof.
Q@ 1{|X|/a>1}<|X|/a
Q@ E[1{|X|/a=1}] <E[X]]/a
P(|X|=a)
e Chebychev inequality: If X have finite variance, foranya > 0
V(X
P(X—EX)| > a) < * )
Proof. )
E|(X—-E
PX— Bl > 2) = P ((X— B2 > a?) < TLE 200
@ Proof of LLN: By Chebycheyv,
¥ V(Xn) _ V(X)
P (X, —EX]| > ¢) < 2 o2 —0asn— oo
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Asymptotic

Central Limit Theorem

e Consistency is not about the distribution of T,

e Sampling distribution at the limit: Asymptotic distribution

e Convergence in distribution: A sequence of r.v.s, {X,}°° ,
converges in distribution to r.v. X if and only if

nlggo FXn (X) = Fx(X)

at all points x where Fx(x) is continuous. We write X, 4 x
e Central limit theorem (CLT): Let X1, ..., X, form a random sample
from Fx with m.g.f. Mx(t). Then,

nX, —E
(V(X))
e Whatever Fx is, X, follows the Gaussian!
e Powerful tool to establish asymptotic normality of estimators
e [, is asymptotically Normal ~~ tests and C.l.s with large n
@ Slutzky's theorem: If X, 4 X and Y, 2 cfor constant c. Then,
Xo Yo S X4c, Xo¥a X
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Asymptotic

Proof of CLT

@ Proof here assumes that Fx has its m.g.f.

@ CLT holds under much weaker conditions (c.f. DS 6.3)
@ Proof.

@ WLOG, E[X] = 0 and V(X) = 1 = M}(0) = 0 and M}(0) = 1

@ The m.g.f. of VnX, =3 ", Xi/\/nis
e o o (22
e = ()

@ Its limitis the indeterminate form
@ Take the limit of the log and exponentiate

lim nlog Mx

=00 vn) ys0 o y2 ~ y=0 2yMx(yt)
— D hmmrgy = &
7 I M) = 5

Second and fourth equalities hold by L'Hépital’s rule
@ </2is the standard Gaussian’s m.g.f.
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Asymptotic

Asymptotic Tests and C.l.s

@ CLT + Slutzky ~~ asymptotic distribution of a test statistic
e Z-test: Under the null hypothesis that E[X] = 6,

Zn(60) = v, — o) 4 N0, 1)

e
because s2 5 V(X)
e Reject (accept) the null if Z,(8y) ¢ (€) (z%,z’{_%)
e z5: & quantile of the standard Gaussian distribution
e Asymptotic confidence intervals:

Vs

* 9 - S%
Za < <
5 g = 0= Mp+

*
1—

Z% SZH(Q()) SZiTig <:)>,an + %

e Asymptotics are useful: Binary, discrete, skewed, etc.
e Asymptotics are not always correct
e Probability of Type | error is not exactly a
e Probability that C.l.s cover p is not exactly 1 — a
e Sample size is always finite:
@ Consistent estimator can be biased
@ Asymptotic approximation can be poor
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Asymptotic

The Delta Method

@ Recall the Nigeria survey example:
e X;: True answer, 1 if contact and 0 otherwise
e Wi:Diceroll, 1,2,3,4,5,6
e Y;: Observed response, 1 if yes and 0 if no
Estimand is E[X]], true probability of contact with armed groups
We only observe Y;. Can we estimate E[X]?
E[Yi] =P(W,; =6) +P(W; € {2,3,4,5}E[X]] = 1/6 + 2E[Xi]/3
Consistent estimator of E[Y;]: ¥,, & E[Y;] by LLN
Use the continuous mapping theorem!
~ 3(c 1
Ax =5 <Y,, — 6> 2 E[X]
The Delta Method: For a diﬁerentiable function g s.t. g’(u) # 0,
f <9<u,,> W) 4 yvo.1)

ml ﬁ

Proof uses Taylor approxmahon
@ You can derive the asymptotic distribution of iy
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Maximum Likelihood Estimator

@ For some data sets, you want to make parametric assumptions
e E.g., Binary indicator for Dem support ~ Bernoulli
e For Bernoulli r.v.s, we know:
Q@ EX]=p
Q@ V(X)=p(1-p)
e We only need to estimate p, parameter of the distribution
e Maximum Likelihood Estimator (MLE): For a random sample

X; R fx(x; 0), the maximum likelihood estimator of 8 is given by
n
Omie = argmax L, (0) = argmaxH fx(Xi; 0)
8 i=1
e Log-likelihood:
n n
(n(6) = log [ [ fx(Xi:8) = _ log fx(X;; )
i=1 i=1
e Log is monotone ~» MLE maximizes the log-likelihood, too
e Differentiation is much easier as product becomes summation
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MLE

Consistency and Invariance of MLE

e MLE is consistent: Under “regularity conditions,” éMLE 5o
e MLE is invariant: If g is a one-to-one function,

@ g(Ouie) is the MLE of g(6)

© Hence, g(@MLE) £ 9(0)

e Overdispersion:
o X; K Bern(p)
® pmie = argmax, >, {Xjlogp + (1 — X)) log(1 — p)} = X, 5p
o V(X)ye =Xn(1 = Xa) B V(X) = p(1 - p)
o X; "X Pois())
° X/ME: argmax, S7_, {XilogA — A} =X, %A
o V(X)ye =Xo = V(X) = A
0 02, = IS (X = Xi)? 2 V(X) under no parametric assumptions

e 02, > V(X)y.£ suggests parametric assumption is inappropriate
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Fisher Information
@ MLE is asymptotically normal:
Jn(@-8) 4 N (o,z(e)—1)

where Z(6)~" is the Fisher information

2 £(X:;0
o Score: $,(0) = Z0n(0) = X0 1 Llogfx(X;;0) = Y0, 2 )35,9 )
X( i )

e Expected score for each i is zero:

O f (xi; 0) 0
A _ [ agX\%h . o . L
Bls(0)] = [ 2 i O)d = / fy(xi; 8)dxi = O

=1

@ Fisher information: Z(6) = E [S;(Q)Si(Q)T] = V(si(8))
e Information equality: For Hessian H;(0) = 0 log fx(Xi; 0),

~ 0006
E[H;(8)] = —E[si(0)s;(8) "] + %‘?T % / fx(xi; 8)dx; = —Z(0)
-0
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Asymptotic Normality of MLE

@ Score function evaluated at MLE is zero: sn(éMLE) =0

e Taylor expansion of sn(éMLE) around 0:

0 = 5, (Bwie) ~ ZH ) (Owmie — 6)
1
Vn(Buie — 6) ~ - (Z H,-<e>> Vnsn(6)
i=1

n ; =1 n
- (—lZH«e)) Vi (:,ZSK@)) SN (0.16)7)
i=1 i=1

21(6) SN(0,2(8))
e Estimated asymptotic variance of MLE:

\% (éMLE) ~ % (E [—Hi(éMLE)])A ~ %E [Si(éMLE)Si(éMLE)T]

e Hypothesis tests and C.l.s: Replace /s2 with se(Oyg)
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Asymptotic Efficiency of MLE

@ Cramér-Rao Lower Bound (univariate): Let Xq,...,X, form a
random sample from fx(x; 8) and T,, be an estimator of 8. Then,
9 2
(*E[Tn])
V(T,) >~
(Tn) = nZ(0)
Proof.

0 0 <
%E[Tn]:E Tnae,;:logfx(X,-,Q) = Cov (Tp,sn(0))

e Cauchy-Schwarz inequality: For r.v.s X and Y with finite variance,
Cov(X,Y)? < V(X)V(Y)
e Implication of Cauchy-Shwarz: Cov (Tp, s,(8))? < V(T) V (sn(6))
———
nZ(6)
@ MLE is asymptotically efficient: MLE achieves CRLB as n — oo

@ MLE has the minimum asymptotic variance
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