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Overview Exact Asymptotic MLE

Statistical Inference: Overview
Statistical model:

1 Assumption about the world, FX
2 Data, (X1, . . . ,Xn), form a random sample from FX

Estimand, what we want to know about FX:
1 Population moments, e.g., E[X],V(X)
2 Parameters of distribution, θ if FX is written as FX(x;θ)

Estimation:
Define an estimator or statistic, Tn = r(X1, . . . ,Xn)

Sampling distribution:
Theoretical distribution of Tn across samples
Only one realization of Tn in one sample
Theoretical because it depends on FX (and θ)

Exact inference:
Given sample size n
Sampling distribution of Tn derived from FX

Approximate inference:
Asymptotics: Convergence as n → ∞
Sampling distribution of limn→∞ Tn approximated via LLN and CLT
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Overview Exact Asymptotic MLE

Method of Moments Estimator
Method of moments estimator: Let θ be a vector of k estimands
and suppose that the kth moment of FX is written as a function of
θ, E[Xk] = ηk(θ). Themethod of moments (MM) estimator θ̂MM is
the solution for θ to the system of equations

η1(θ) = M1,...
ηk(θ) = Mk.

MM estimator of the population mean μ and variance σ2:
1 μ̂n = 1

n
∑n

i=1 Xi
2 σ̂2n = 1

n
∑n

i=1 X2
i −

(
1
n
∑n

j=1 Xj
)2

= 1
n
∑n

i=1

(
Xi − 1

n
∑n

j=1 Xj
)2

Intuitive: Replace population moments with sample moments
Simple: Not necessarily require assumptions on distribution FX
What if more equations than estimands?

E.g., Poisson distribution: λ = E[X] = V(X)
Incorporate p.(d.)f. into estimator⇝MLE
Finding the “best” value⇝ GMM
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Exact Inference on MM Estimator
We know the mean and variance of μ̂n:

E[μ̂n] = μ,V(μ̂n) = σ2/n
For any n, without any parametric assumptions

μ̂n is unbiased: E[μ̂n] = μ
Is σ̂2n unbiased?

1
n

n∑
i=1

(Xi − μ)2 = σ̂2n + (μ̂n − μ)2 ⇔ σ2 = E
[
σ̂2n

]
+

σ2

n

σ̂2n is biased: E
[
σ̂2n

]
= n−1

n σ2

Unbiased variance:
s2n ≡ n

n−1 σ̂2n = 1
n−1

∑n
i=1(Xi − μ̂n)

E[s2n] = n
n−1E[σ̂2n] = σ2

Again for any n, without any parametric assumptions

Can we find the sampling distribution of σ2
n or s2n?
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Overview Exact Asymptotic MLE

Exact Sampling Distribution of MM Estimator
We need parametric assumptions for further exact inference:

Well known if FX is Gaussian⇝ t-statistic
FX is Bernoulli

X1, . . . ,Xn i.i.d.∼ N (μ,σ2) ⇒ μ̂n ∼ N (μ,σ2/n)
Sampling distribution of sample/unbiased variance:

1
σ2

n∑
i=1

(Xi − μ̂n)2 =
n− 1
σ2 s2n =

n
σ2 σ̂2n ∼ χ2n−1

χ2n−1 is the Chi-squared distribution with degrees of freedom n− 1
χ2n−1 = Gamma

(n−1
2 , 12

)
Sum of the squares of n− 1 independent Gaussian r.v.s

Proof. Assume μ = 0 since Xi + μ− (μ̂n + μ) for any μ
1 1

σ2
∑n

i=1 X2
i = 1

σ2
∑n

i=1 (Xi − μ̂n)
2
+ n

σ2 μ̂2n
2 If Xi i.i.d.∼ N (μ,σ2),∑n

i=1 (Xi − μ̂n)
2 and μ̂2n are independent

3 We know 1
σ2
∑n

i=1 X2
i ∼ χ2n and n

σ2 μ̂2n ∼ χ21
4 We use the m.g.f.s of these to get the m.g.f. of 1

σ2
∑n

i=1 (Xi − μ̂n)
2

Yuki Shiraito Statistical Inference POLSCI 599 4 / 19



Overview Exact Asymptotic MLE

t-statistic
Now we know the sampling distributions of μ̂n and n−1

σ2 s2n
Problem: Two unknown parameters, μ and σ2

t-statistic: For a fixed number θ, the t-statistic is defined as
Tn(θ) ≡

√n(μ̂n − θ)√
s2n

Student’s t-distribution: Let Z ∼ N (0,1) and V ∼ χ2n−1. Then,
Z√

V/(n−1) follows the t-distribution with n− 1 degrees of freedom.
If θ = μ, Tn(θ) follows Student’s t-distribution:

∼N (0,1)︷ ︸︸ ︷√ n
σ2 (μ̂n − μ)(

n− 1
σ2 s2n︸ ︷︷ ︸
∼χ2n−1

/(n− 1)
) 1

2
= Tn(μ)
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Hypothesis Testing: The t-test
Assuming θ = μ, we know how likely a value of Tn(θ) is
Hypothesis Testing:

1 Have a hypothesis that μ = θ0 (null hypothesis)
2 Compute Tn(θ0)
3 Is the value of Tn(θ0) consistent with the null?

What “consistent” means:
The value of Tn(θ0) is “not unlikely” under the null
The sampling distribution⇝ how likely a value is
Range from the α

2 quantile to the 1− α
2 quantile is not unlikely

Testing procedure:
Reject (accept) the null if Tn(θ0) /∈ (∈)[t∗n−1, α2 , t

∗
n−1,1− α

2
]

t∗n−1,δ: the δ quantile of the t-distribution
Tn(θ) is an r.v.⇝ error is always possible

Type I error (false positive): Reject the null when μ = θ0
Type II error (false negative): Accept the null when μ ̸= θ0

Probability of Type I error across samples is α
Multiple testing problem:

If you run testing many times, you reject the null in some tests
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Interval Estimation
We know μ̂n (estimator) is not exactly equal to μ (estimand)
Instead of one value, use an interval to account for randomness
Interval estimation:

Get the inverse of the acceptance region of the t-test

Tn(θ0) ⋚ t∗n−1,δ ⇔ θ0 ⋛ μ̂n −
√
s2n√n t∗n−1,δ ⇔ θ0 ⋛ μ̂n +

√
s2n√n t∗n−1,1−δ[

μ̂n +
√

s2n√n t∗n−1, α2 , μ̂n +
√

s2n√n t∗n−1,1− α
2

]
is the confidence interval

Confidence intervals are random intervals
Bounds have sampling distributions
Intervals vary across samples
P
(
μ̂n +

√
s2n√n t∗n−1, α2 ≤ μ ≤ μ̂n +

√
s2n√n t∗n−1,1− α

2

)
= 1− α

Correct: Across samples, the C.I.s cover μ with probability 1− α
Wrong: A given C.I. contains μ with probability 1− α
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Approximate Inference
In exact inference, we need to assume data distribution FX
We may not know a reasonable parametric assumption on FX
Derived sampling distribution may not be in a well known family
Asymptotic inference: Sampling distributions are approximated
by the limit as sample size n approaches∞
What is the limit of r.v.s?
Limit of a sequence: Let {xn}∞n=1 be a sequence of real numbers.
The limit of sequence xn, written by limn→∞ xn = x or xn → x, is

lim
n→∞

xn = x def.⇐⇒ ∀ε > 0 ∃N s.t. |xn − x| < ε for n > N
Convergence in probability: Let {Xn}∞n=1 be a sequence of r.v.s.
Xn converges in probability to an r.v. X if and only if for any ε > 0

lim
n→∞

P(|Xn − X| ≥ ε) = 0.
We write Xn p→ X or plimn→∞ Xn = X

Recall that Xn is random but P(|Xn − X| ≥ ε) is not
Consider P(|Xn − X| ≥ ε) as a sequence, and its limit is 0
X can be a constant
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Law of Large Numbers
Does estimator Tn approach estimand θ as n approaches∞?
Consistency: Tn is a consistent estimator of θ if Tn p→ θ

As n increases, probability that Tn is away from θ vanishes
Consistency neither implies or is implied by unbiasedness

Weak law of large numbers (LLN): Let X1, . . . ,Xn form a random
sample from FX with a finite second moment. Then,

Xn ≡ 1
n

n∑
i=1

Xi p→ E[X]

Powerful tool to establish consistency of an estimator
μ̂n is a consistent estimator of μ

Continuous mapping theorem: Let g be a continuous function.
Then, Xn p→ X implies that g(Xn) p→ g(X)

If FX has a finite fourth moment, σ̂2n is a consistent estimator of σ2

1
n

n∑
i=1

X2
i

p→ E[X2],

(
1
n

n∑
i=1

Xi
)2

p→ (E[X])2
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Proof of LLN
Markov inequality: For any r.v. X and constant a > 0,

P(|X| ≥ a) ≤ E[|X|]
a

Proof.
1 1 {|X|/a ≥ 1} ≤ |X|/a
2 E [1 {|X|/a ≥ 1}]︸ ︷︷ ︸

P(|X|≥a)

≤ E [|X|] /a

Chebychev inequality: If X have finite variance, for any a > 0
P (|X− E[X]| ≥ a) ≤ V(X)

a2
Proof.

P (|X− E[X]| ≥ a) = P
(
(X− E[X])2 ≥ a2

)
≤

E
[
(X− E[X])2

]
a2

Proof of LLN: By Chebychev,
P
(
|Xn − E[X]| ≥ ε

)
≤ V(Xn)

ε2 =
V(X)
nε2 → 0 as n → ∞
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Central Limit Theorem
Consistency is not about the distribution of Tn
Sampling distribution at the limit: Asymptotic distribution
Convergence in distribution: A sequence of r.v.s, {Xn}∞n=1
converges in distribution to r.v. X if and only if

lim
n→∞

FXn(x) = FX(x)
at all points x where FX(x) is continuous. We write Xn d→ X
Central limit theorem (CLT): Let X1, . . . ,Xn form a random sample
from FX with m.g.f.MX(t). Then,√n(Xn − E[X])√

(V(X))
d→ N (0,1)

Whatever FX is, Xn follows the Gaussian!
Powerful tool to establish asymptotic normality of estimators
μ̂n is asymptotically Normal⇝ tests and C.I.s with large n

Slutzky’s theorem: If Xn d→ X and Yn p→ c for constant c. Then,
Xn + Yn d→ X+ c, XnYn d→ cX
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Overview Exact Asymptotic MLE

Proof of CLT
Proof here assumes that FX has its m.g.f.
CLT holds under much weaker conditions (c.f. DS 6.3)
Proof.

1 WLOG, E[X] = 0 and V(X) = 1⇒M′
X(0) = 0 andM′′

X(0) = 1
2 The m.g.f. of √nXn =

∑n
i=1 Xi/

√n is

E[et
∑n

i=1 Xi/
√n] = MX

( t√n

)n

3 Its limit is the indeterminate form
4 Take the limit of the log and exponentiate

lim
n→∞

n logMX

( t√n

)
= lim

y→0
logMX(yt)

y2 = lim
y→0

tM′
X(yt)

2yMX(yt)
=

t
2 lim

y→0
M′

X(yt)
y

=
t2
2 lim

y→0
M′′(yt) = t2

2
Second and fourth equalities hold by L’Hôpital’s rule

5 et2/2 is the standard Gaussian’s m.g.f.
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Asymptotic Tests and C.I.s
CLT + Slutzky⇝ asymptotic distribution of a test statistic
Z-test: Under the null hypothesis that E[X] = θ0,

Zn(θ0) ≡
√n(μ̂n − θ0)√

s2n
d→ N (0,1)

because s2n
p→ V(X)

Reject (accept) the null if Zn(θ0) /∈ (∈)
(
z∗α

2
, z∗1− α

2

)
z∗δ: δ quantile of the standard Gaussian distribution

Asymptotic confidence intervals:
z∗α
2
≤ Zn(θ0) ≤ z∗1− α

2
⇔ μ̂n +

√
s2n√n z∗α

2
≤ θ0 ≤ μ̂n +

√
s2n√n z∗1− α

2

Asymptotics are useful: Binary, discrete, skewed, etc.
Asymptotics are not always correct

Probability of Type I error is not exactly α
Probability that C.I.s cover μ is not exactly 1− α
Sample size is always finite:

1 Consistent estimator can be biased
2 Asymptotic approximation can be poor
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The Delta Method
Recall the Nigeria survey example:

Xi: True answer, 1 if contact and 0 otherwise
Wi: Dice roll, 1,2,3,4,5,6
Yi: Observed response, 1 if yes and 0 if no

Estimand is E[Xi], true probability of contact with armed groups
We only observe Yi. Can we estimate E[Xi]?
E[Yi] = P(Wi = 6) + P(Wi ∈ {2,3,4,5})E[Xi] = 1/6+ 2E[Xi]/3
Consistent estimator of E[Yi]: Yn p→ E[Yi] by LLN
Use the continuous mapping theorem!

μ̂X ≡ 3
2

(
Yn −

1
6

)
p→ E[Xi]

The Delta Method: For a differentiable function g s.t. g′(μ) ̸= 0,√n(g(μ̂n)− g(μ))
|g′(μ)|

√
V(X)

d→ N (0,1)
Proof uses Taylor approximation
You can derive the asymptotic distribution of μ̂X

Yuki Shiraito Statistical Inference POLSCI 599 14 / 19



Overview Exact Asymptotic MLE

Maximum Likelihood Estimator
For some data sets, you want to make parametric assumptions

E.g., Binary indicator for Dem support⇝ Bernoulli
For Bernoulli r.v.s, we know:

1 E[X] = p
2 V(X) = p(1− p)

We only need to estimate p, parameter of the distribution
Maximum Likelihood Estimator (MLE): For a random sample
Xi i.i.d.∼ fX(x;θ), themaximum likelihood estimator of θ is given by

θ̂MLE ≡ argmax
θ

Ln(θ) = argmax
θ

n∏
i=1

fX(Xi;θ)

Log-likelihood:

ℓn(θ) ≡ log

n∏
i=1

fX(Xi;θ) =
n∑
i=1

log fX(Xi;θ)

Log is monotone⇝MLE maximizes the log-likelihood, too
Differentiation is much easier as product becomes summation
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Consistency and Invariance of MLE
MLE is consistent: Under “regularity conditions,” θ̂MLE

p→ θ
MLE is invariant: If g is a one-to-one function,

1 g(θ̂MLE) is the MLE of g(θ)
2 Hence, g(θ̂MLE)

p→ g(θ)

Overdispersion:
Xi i.i.d.∼ Bern(p)

p̂MLE = argmaxp
∑n

i=1 {Xi logp+ (1− Xi) log(1− p)} = Xn
p→ p

V̂(X)MLE = Xn(1− Xn)
p→ V(X) = p(1− p)

Xi i.i.d.∼ Pois(λ)
λ̂MLE = argmaxλ

∑n
i=1 {Xi log λ− λ} = Xn

p→ λ
V̂(X)MLE = Xn

p→ V(X) = λ
σ̂2n = 1

n
∑n

i=1(Xi − Xn)2 p→ V(X) under no parametric assumptions
σ̂2n ≫ V̂(X)MLE suggests parametric assumption is inappropriate
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Fisher Information
MLE is asymptotically normal:

√n(θ̂− θ) d→ N
(
0, I(θ)−1

)
where I(θ)−1 is the Fisher information

Score: sn(θ) ≡ ∂
∂θℓn(θ) =

∑n
i=1

∂
∂θ log fX(Xi;θ) =

∑n
i=1

∂
∂θ fX(Xi;θ)
fX(Xi;θ)

Expected score for each i is zero:
E [si(θ)] =

∫ ∂
∂θ fX(xi;θ)
fX(xi;θ)

fX(xi;θ)dxi =
∂

∂θ

∫
fX(xi;θ)dxi︸ ︷︷ ︸

=1

= 0

Fisher information: I(θ) ≡ E
[
si(θ)si(θ)⊤

]
= V(si(θ))

Information equality: For Hessian Hi(θ) ≡ ∂2

∂θ∂θ⊤ log fX(Xi;θ),
E [Hi(θ)] = −E[si(θ)si(θ)⊤] +

∂

∂θ⊤
∂

∂θ

∫
fX(xi;θ)dxi︸ ︷︷ ︸
=0

= −I(θ)

Yuki Shiraito Statistical Inference POLSCI 599 17 / 19



Overview Exact Asymptotic MLE

Asymptotic Normality of MLE
Score function evaluated at MLE is zero: sn(θ̂MLE) = 0
Taylor expansion of sn(θ̂MLE) around θ:

0 = sn(θ̂MLE) ≈ sn(θ) +
( n∑

i=1
Hi(θ)

)
(θ̂MLE − θ)

√n(θ̂MLE − θ) ≈ −

( n∑
i=1

Hi(θ)
)−1√nsn(θ)

=

(
−1
n

n∑
i=1

Hi(θ)
)−1

︸ ︷︷ ︸
p→I(θ)

√n
(
1
n

n∑
i=1

si(θ)
)

︸ ︷︷ ︸
d→N (0,I(θ))

d→ N
(
0, I(θ)−1

)

Estimated asymptotic variance of MLE:
V
(
θ̂MLE

)
≈ 1

n
(
E
[
−Hi(θ̂MLE)

])−1
≈ 1

nE
[
si(θ̂MLE)si(θ̂MLE)

⊤
]

Hypothesis tests and C.I.s: Replace
√
s2n with se(θ̂MLE)

Yuki Shiraito Statistical Inference POLSCI 599 18 / 19



Overview Exact Asymptotic MLE

Asymptotic Efficiency of MLE

Cramér-Rao Lower Bound (univariate): Let X1, . . . ,Xn form a
random sample from fX(x;θ) and Tn be an estimator of θ. Then,

V(Tn) ≥
(

∂
∂θE[Tn]

)2
nI(θ)

Proof.
∂

∂θE[Tn] = E

[
Tn

∂

∂θ
n∑
i=1

log fX(Xi;θ)
]
= Cov (Tn, sn(θ))

Cauchy-Schwarz inequality: For r.v.s X and Y with finite variance,
Cov(X, Y)2 ≤ V(X)V(Y)

Implication of Cauchy-Shwarz: Cov (Tn, sn(θ))2 ≤ V(Tn)V (sn(θ))︸ ︷︷ ︸
nI(θ)

MLE is asymptotically efficient: MLE achieves CRLB as n → ∞
MLE has the minimum asymptotic variance
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