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Expectation

Expectation

e Summary of r.v. X:
e What is the gain you expect from a lottery?
e What is the number of Dems you expect in a sample?
e What is the lifetime income you expect from an academic job?

@ Expectation or expected value of X: Weighted average of X
where the weights are the probability measure of events X = x
@ For a discreter.v. X,

EX] =) xfx(x)

@ For a continuous r.v. X,

EX] = /xfx(x)dx

e X~Bern(p)=EX]=p
e X~ Unif(0,1) = EX]=1/2
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Expectation

Existence of Expectation

e Expectation does not always exist

e Existence of expectation: E[X] exists if and only if E[X_] < oo or
E[X;] < oo, where X_ = —min{X,0} and X; = max{X, 0}.
@ EX_]<ocoandE[X;] < oo: —oo < E[X] < o0
O EX_]| < wandEX_] = o0: EX] = —0
O EX ]=ccandEX_] < o0 E[X] = 0
Q E[X,] =occand EX_] = oo: E[X] does not exist

@ Expectation can be infinity, but its sign should be well defined

e X follows the standard Cauchy distribution:

fX(X):Afor —00 <X <00

n(1+x2)
Valid p.d.f: [%_f(x)dx = [tan™"(x)/n]>,, = {n/2 — (—n/2)}/n =1
Jo~ xf(x)dx = [log(1 4+ x?) /2] = o0
Similarly, [°_ —xf(x)dx = [log(1 +x2)/2]° . = o0
Expectation does not exist for the Cauchy distribution
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Expectation

Indicator and Linearity

@ Expectation of Indicator: For a probability space (Q, F,P), let A
be an event and define rv. 14 = 1{w € A} . Then, E[14] = P(A)
e Corollary: Let C C R. Forr.v. X, define 1¢(X) = 1{X € C}. Then,
E[1cX)] = P(X € C)
@ Dice roll: X is the number on the face
o LetC=1{2,3,4,5)
o P(X € C)=2/3
o E[1c(X)] =1x (4% 1/6)+0x (2x1/6)=2/3

e Linearity: Let X;,X5 be r.v.s. Then,
E[aX71 4+ bX, + ¢| = aE[X;] + bE[X5] + ¢

@ Binomial expectation:
e By deflmtlon of expactation,

ElX] = Z <> ”npz< ) (1=p) =np
° Blnom(n p) is the distribution ofz X; where X; "< "Bern(p)
EX] =EXi] +--- + E[X,] = np
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Expectation

Random Vectors

e Expectation of random vector: For a random vector X, its
expectation is defined as
EX] = (EX1],..., EXo])
where the expectation of X; is over its marginal distribution

e Multinomial distribution X ~ Multi(n, p):
@ Marginal distribution of X; is Binomial:

n! N X
PXi=x1)= Y mpf - PK

n! X1 (ﬂ—X1)! X XK
= i —xiP > ol P2 PK

x1!(n—x1) xz...xKXZ""XK

* X1 1 _ n—xi
X1!(n —'X1)!p1 ( p1)

@ E[X] = (np1,....npxk)
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Expectation

Functions and Product

@ Expectation of functions of rv.: LetXbearv.andg: R — R.
Then,

3 g(x)f (x) (X discrete)
Elg(X)] = {f g(x)fx(x)dx (X continuous)

Proof. Directly follows from the fact that forany C C R,
P(gX)eC)=P(X e {xeR | g(x) € C})
e X follows a Geometric distribution, X ~ Geom(p):
fx(x) = (1 —p)'p, forx=1,2,...
@ St. Petersburg paradox: g(x) = 2¥ = E[g(X)] = o ifp = 1/2
@ E[g(X)] # g(E[X]) in general: E[X] = 2
@ Lemma: Let X be a discrete r.v. whose support is the
non-negative integers. Then, E[X] = > 72 ; P(X > x)

@ Product of independentr.v.s: Let Xj,i = 1,...,n are independent.
Then, E[[[L, Xa] = [T-1 E[X]]
o X; " Bern(p) = P(X1 =1,.... X, = 1) = p"
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Expectation

Inequalities of Expectation

e If X1 < X, with probability 1, i.e., X1(w) < Xp(w) forall w € Q,
then E[X1] < E[Xy]

e If a < X < b with probability 1, i.e., a < X(w) < b forall w € Q,
thena <E[X] <b

e Jensen'sinequality: Let g : R — R be a concave (convex)
function. Then, for a random vector X, E[g(X)] < (>)g(E[X])
e Concave function: A function g : R” — R is concave if and only if
foreverya € (0,1),
g(ox+ (1 —a)y) = ag(x) + (1 —a)g(y)
foranyx,y € R"
e Logarithm is common in statistics: E[log(X)] < log (E[X])
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Moments

Moments and Variance

e Moments of an r.v.: For an r.v. X and a positive integer k, E[X] is
called the kth moment of X

e Existence of moments: If E[XX] exists, E[X] exists for any | < k

e Central moments: E[(X — E[X])X] is called the kth central moment
or the kth moment of X about the mean

@ If the kth moment exists, the Ith central moment exists for | < k

Variance: The second centeral moment of X is called the
variance of X, denoted by V(X) = E[(X — E[X])?]

Variance and moments: V(X) = E[X?] — (E[X])?

V(X) > 0, with equality if and only if P(X = ¢) = 1 for some ¢
Y=aX+b = V(Y) =a?V(X)

Variance of Bern(p): E[X?] — (E[X])2 =p —p? =p(1 —p)
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Moments

Covariance

@ Covariance: For r.v.s Xy and Xj, the covariance of X7 and X»,
denoted by Cov(X7,X3), is defined as:
Cov(X1,X2) = E[(X1 — E[X1])(X2 — E[X2])]
@ Analogously to the variance, Cov(X1,X2) = E[X1X,] — E[Xj4]E[X3]
e Correlation: The correlation of Xy and X5, denoted by p(X1,X>),

is defined as:
Cov(X4,X2)

V(X1)V(X2)
® p(X1,Xz) = Cov (X1 — EIX))/V/VX1), (Xz — EIX.])/V(X2) )

e Covariance depends on the scale of r.v.s, but |p(X7,X5)| < 1

P(X1,X2) =

e Xy and X, are uncorrelated if and only if Cov(X7,X2) =0
e X7 and X, are independent = X; and X, are uncorrelated
@ The converse does not necessarily hold:
e U~ Unif(0,1), X1 = cos2nU and X, = sin 2nU
e Clearly, X7 and X5 are not independent, but Cov(X1,X2) =0
e Covariance and correlation indicate linear relationship b/w r.v.s
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Moments

Variance-Covariance Matrix

e Trivially, V(X) = E[(X — E[X])(X — E[X])] = Cov(X,X)

@ Variance-covariance Matrix: For rv.s Xy, ..., X,, we define the
(variance-)covariance matrix, denoted by V(X) or 2x, as
V(X1) COV(X1>X2) T COV(X'th)
Cov(X2,X1) V(X))  --- Cov(X2,Xn)
2 = . . , .
Cov(Xp, X1) Cov(Xn,Xa) -+ V(Xn)
e In vector notation, 3x = E[(X — E[X])(X — E[X]) ]

2x is positive semi-definite
>x is positive definite unless some r.v.s are constant = invertible

If X1,...,X, arei.i.d., 2x is diagonal
V(S0 aXi) = X af V(X)) + 230, aiaiCov(X;, X))
Xis are uncorrelated, V (37, Xi) = Y7, V(X))
IfX1,...,. Xpareiid., V(30 Xj) =tr(3x)
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Conditional Expectation

Conditional Expectation

e Summarizing prediction of Y using X:
e Given X = x, Yis predicted by its conditional distribution
e Conditional expectation is used to summarize the prediction

e Conditional expectation: The conditional expectation of Y given

X, denoted by E[Y'| X], is the expectation of the conditional
distribution of Y given X

e Conditional moments are defined with expectation replaced by

conditional expectation, e.g. V(Y | X) = E[(Y — E[Y' | X])? | X]
e Conditional expectation is an r.v.:
e E[Y| X]is afunction of X
e E[Y| X] has a distribution defined by Fx
e Conditional expectation is expectation:
e For any fixed xq, E[Y | X = x1] is expectation
e All the properties of expectation hold for E[Y | X = x1]
e Uniform-Binomial example:
1 X2 _ n—Xo
If-‘j[X1|X2]=/X1BX1 (- x) g = 22t ]
0 Xo+1,n—=Xo+1) n+2
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Conditional Expectation

Properties of Conditional Expectation

e Law of iterated expectations: Let X and Y be r.v.s. Then,
EE[gX,Y) | X]] = E[g(X,Y)]
for any function g.
e Law of total variance: Let X and Y be r.v.s. Then,
EVY | X)]+ V(E[Y | X]) = V(Y)
e Uniform-Binomial example:

E[X,] = E[nX;] = g S

VIX] = E[nX: (1= X1)] + V(nX1) = 2 + 7>

e Minimization of expected squared distance (regression):
Conditional expectation is the “best” predictor in the sense that

argmin £ [(Y— c)? | X} = E[Y|X]
Proof.
E|(Y=c)? | X| =E[(Y=EY | X)) | X| + ElY]| X] - c)?
————
=0 iff c=E[Y|X]
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Conditional Expectation

Standard Gaussian Distribution

o X follows the standard multivariate Gaussian distribution:
e Joint p.d.f.: For a vector of real numbers X=X{...,XK,

2
k

1 %
fx(x) = W 1;[ 2

e Denoted by: X ~ N(0,Ix)
e Xq,...,Xx are independent
e K= 1:The standard Gaussian (Normal) distribution A/(0, 1)

@ Box-Muller Transfromation: Let U7 and U, be independent
uniform r.v.s. Define

X1 = /—21log Uy cos(2nUs),
Xy = y/—2log Uy sin(2nU,).

X~ N(O’ IZ)
@ Random number generator for the Gaussian distributions
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Conditional Expectation

Change of Variables

e BH, 8.1; DS, p. 172-3, 182-6

e Change of variables: Let X be a continuous random vector of
length Kand Y = g(X) where g : R — RX is one-to-one and
differentiable. Then, the p.d.f. of Y is

frly) = fx (971 (v)) ldet (3(y))|

where g~ ' : RK — R is the inverse function of g.

J(-) is the Jacobian (matrix) of g~! defined as:

6971 6971
3;1 (y) - a}JK (¥)

J(y) =

69_1 89_1
ayK1 (y) - a}lfK (v)

where 9/'_1 (y) is the ith element ofg_1 (y).
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Conditional Expectation

Univariate Change of Variables

e Univariate change of variables: Let X be a continuous r.v. and
Y = g(X) where g : R — R is one-to-one and differentiable. Then,

the p.d.f. of Yis
-1

W) = (o7'0) |2~ )

e Proof.
@ If g(x) is one-to-one and differentiable, it is either strictly
increasing or decreasing.
@ First, we assume that it is strictly increasing. Then, the c.d.f. of Yis

Frly) =P(Y<y) =P(g(X) <y) =P(X<g7'(v)) = Fx (7' )
© Sothe p.d.f ofYis

frly) = FY()’) *FX (97 ()

= fx (97" () d; (v) (. chainrule)
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Conditional Expectation
@ Proof, cont.
1
@ Because g is strictly increasing, we have dgd—y(y) > 0 so that

do—1 dg—!

9-) = |20

© Second, we consider the case in which g is strictly decreasing.
Then, the c.d.f. of Yis

Fry) =P(Y<y)=P(g(X) <y) =P (X>g~'(¥)
=1-PX<g ') =1-Fx(97')

Note that the inequality is flipped because g is strictly decreasing.
@ Sothe p.d.f. of Yis

firly) = —Fym CTU_FX(Q ')

~ (9”0 ) = () (-2 0)

@ Becausegis strlctly decreasing, we have Zy (v) < O so that
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Conditional Expectation

Box-Muller Transformation

@ Inverse of the Box-Muller transformation:

X1 = /=2logUj cos(2nUy) - Uy = e Xi+X)/2
X, = /—2logUqsin(2nUsy) U, = %arctan(ﬁ%)

@ The determinant of the Jacobian is:

aUy  9U;
det (J(X)) :det< oo o >

Xy Xy
_X1ef(x$+xg)/2 _Xzef(xﬂxg)/z
= det —Xp /X2 1/X
2n(1+(X2/X1)?) 2n(1+(X2/X1)?)

— — _X%/X% o~ (X4+X35)/2
2n (1 + (X2/X1)?)

1 e Xi/2 « 1 e X5/2

\V2n \vV2n
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Conditional Expectation

Linear Transformation of Gaussian

@ Linear transformation: Let X be a K-dimensional random vector.
A linear transformation of X is
Y =a+ AX
where A is a matrix with K columns
e Multivariate Gaussian: Let X follow the standard multivariate
Gaussian distribution. Then, for a full rank K x K matrix A and an
K dimensional vector y, Y = y + AX has a p.d.f.:

Aly) = —3 (=) T2 (y—p)

where S = AAT
Proof.

(2m)K/2 det(3)1/2°

X=A""(Y—-p)
J=A""
e E[Y =pandV(Y)=2
e Uncorrelated < (pairwise) independent
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Conditional Expectation

Conditional and Marginal of Gaussian

e Let (X1,X2)" ~ N (u,3). The joint p.d.f. is:
Xq— 2 X1 — Xo— Xo— 2
672(11132){( 1o1u1) ,2p< 101w1>( zo;z)Jr( 202u2> }
f X1,Xp) =
0 (X1:%2) 2noroay/T = 7
i\ 2
—W(xz—ﬂz—m& = M) e,%(ﬁ;m )2
V2noy\/1 — p? V2noy
—_———
fx, 1, (*21x1) fx, (x1)
o Xy ~ N (1y,02), Xo | Xy ~ N <p2 + 822 (X — ), (1~ p2)o§)

@ Both marginal and conditional distributions are Gaussian

e

e Regression E[X; | X4] = i, + £22(Xq — py) is linear in X
~ linear regression
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M.G.F.

Moment Generating Function

e Moment generating function: Let X be an r.v. The moment
generating function (m.g.f.) of X, denoted by Mx(t), is defined as

Mx(t) = E[e*]
if E[e¥] exists for all t € (—s,s) for some s > 0.

e If m.g.f. is given, higher order moments can be easily computed:

k
ddtk Mx(t)| =EXe®™] =EX, fork=1,2,...
t=0

e If Xq,...,X, are independent, the m.g.fof Y=, X;is
n n
My(t) = E[e =1 %] HefX [[Ee™) = [[Mx(®
i=1 i=1

e M.g.f. uniquely determines the distribution: If rv.s X5 and X3
have m.g.f.s and M, (t) = Mx, (t) for all t € (—a, a) for some
a > 0, then c.d.f.s Fx, (x) = Fx, (x) for all x
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M.G.F.

M.g.f. of Gamma Distributions

@ Square of a Gaussian r.v. follows a Gamma distribution
e X follows a Gamma distribution:
e Pd.f.:

fx(x) = r't(%a)xa_1e_ﬁ" for x>0
Parameters: Shape a > 0 and rate § > 0
Alternative parametenzaﬂon Shape a > 0 and scale 6 = 1/f
Gamma function: ['(a) = [y x°~Te™*dx
Denoted by: X ~ Ga( ,B)
e M.g.f. of the Gamma distribution:
a 00 a a
E[etX] _ 18 / X9~ 1 - )de _ B r(a> o < B >
M(a) Jo Ma) (B-t)7, \P—t
e Expectation and variance: E[X] = a/B, V[X] = a/B?
e Sum of independent Gamma r.v.s X; ~ Ga(a;, 8),i=1,...,n

My x(8) = IﬁMx,-(t) = ’ﬁ <[3B—t>ai _ <,8,8_t>2f1 3

n n
= > Xi~Ga(d L ai,B)
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Sample Moments

Sample Moments

e LetXj,..., X, isarandom sample from a distribution Fx

@ In other words, X1,...,X, are data

e Sample moments: Let X1, ..., X, be i.i.d. r.v.s. The kth sample
moment, denoted by M, is defined as

R
@ Why this is important: We never observe Fy, hence neither E[X¥|

e We use M, as an estimator—a function of r.v.s, therefore r.v.
@ Mean and variance of M, for any Fx:

k
EM,] = EXK, V(M) = 2 &)

e In particular, for sample mean X =37, Xi/n,
- o V(X
EX| = EX, V(%)= ")

e If we specify Fx, we can derive the distribution of M,
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Sample Moments

Sample Mean of Gaussian R.v.

e We want to find the distribution of the sum of independent r.v.s
~+ use m.g.f.!

e M.g.f. of the Gaussian distribution N (u, 0?):
E[etX] :/ #e % 2(X )2 —HXOIX

2rno
S 1 20112 1,22
:/ 1 oz - (uto?n Y rprr jo? g

0 1 2 2
_ ept+;02t2/ 1 e—ﬁ{x—(ﬂ-l—o 0} dx — ept+%02t2
— V200

e M.g.f. of the sample mean:
HE “ s+307 %)2} :e“t—‘r%(%)tz
:)YNN(,U,7>

Yuki Shiraito Expectation and Moments POLSCI 599 22/22



	Expectation
	Moments
	Conditional Expectation
	M.G.F.
	Sample Moments

