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Expectation Moments Conditional Expectation M.G.F. Sample Moments

Expectation
Summary of r.v. X:

What is the gain you expect from a lottery?
What is the number of Dems you expect in a sample?
What is the lifetime income you expect from an academic job?

Expectation or expected value of X: Weighted average of X
where the weights are the probability measure of events X = x
For a discrete r.v. X,

E[X] =
∑
x
xfX(x)

For a continuous r.v. X,
E[X] =

∫
x
xfX(x)dx

X ∼ Bern(p) ⇒ E[X] = p
X ∼ Unif(0,1) ⇒ E[X] = 1/2
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Existence of Expectation
Expectation does not always exist
Existence of expectation: E[X] exists if and only if E[X−] < ∞ or
E[X+] < ∞, where X− ≡ −min{X,0} and X+ ≡ max{X,0}.

1 E[X−] < ∞ and E[X+] < ∞: −∞ < E[X] < ∞
2 E[X−] < ∞ and E[X−] = ∞: E[X] = −∞
3 E[X+] = ∞ and E[X−] < ∞: E[X] = ∞
4 E[X+] = ∞ and E[X−] = ∞: E[X] does not exist

Expectation can be infinity, but its sign should be well defined

X follows the standard Cauchy distribution:
fX(x) =

1
π(1+ x2) for −∞ < x < ∞

Valid p.d.f:
∫∞
−∞ f(x)dx = [tan−1(x)/π]∞−∞ = {π/2− (−π/2)}/π = 1∫∞

0 xf(x)dx = [log(1+ x2)/2]∞0 = ∞
Similarly,

∫ 0
−∞ −xf(x)dx = [log(1+ x2)/2]0−∞ = ∞

Expectation does not exist for the Cauchy distribution
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Indicator and Linearity
Expectation of Indicator: For a probability space (Ω,F ,P), let A
be an event and define r.v. 1A ≡ 1{ω ∈ A} . Then, E[1A] = P(A)
Corollary: Let C ⊂ R. For r.v. X, define 1C(X) ≡ 1{X ∈ C}. Then,
E[1C(X)] = P(X ∈ C)
Dice roll: X is the number on the face

Let C ≡ {2,3,4,5}
P(X ∈ C) = 2/3
E[1C(X)] = 1× (4× 1/6) + 0× (2× 1/6) = 2/3

Linearity: Let X1,X2 be r.v.s. Then,
E[aX1 + bX2 + c] = aE[X1] + bE[X2] + c

Binomial expectation:
By definition of expactation,
E[X] =

n∑
x=0

x
(n
x

)
px(1−p)n−x = np

n∑
x=1

(n− 1
x− 1

)
px−1(1−p)n−x = np

Binom(n,p) is the distribution of∑n
i=1 Xi where Xi

i.i.d.∼ Bern(p)
E[X] = E[X1] + · · ·+ E[Xn] = np
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Random Vectors
Expectation of random vector: For a random vector X, its
expectation is defined as

E[X] ≡ (E[X1], . . . ,E[Xn])
where the expectation of Xi is over its marginal distribution

Multinomial distribution X ∼ Multi(n, p):
1 Marginal distribution of X1 is Binomial:

P(X1 = x1) =
∑
x2...xK

n!
x1! . . . xK!

px1
1 . . .pxK

K

=
n!

x1!(n− x1)!
px1
1
∑
x2...xK

(n− x1)!
x2! . . . xK!

px2
2 . . .pxK

K

=
n!

x1!(n− x1)!
px1
1 (1− p1)

n−x1

2 E[X] = (np1, . . . ,npK)
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Functions and Product
Expectation of functions of r.v.: Let X be a r.v. and g : R → R.
Then,

E[g(X)] =
{∑

x g(x)fX(x) (X discrete)∫
x g(x)fX(x)dx (X continuous)

Proof. Directly follows from the fact that for any C ⊂ R,
P(g(X) ∈ C) = P(X ∈ {x ∈ R | g(x) ∈ C})
X follows a Geometric distribution, X ∼ Geom(p):

fX(x) = (1− p)x−1p, for x = 1,2, . . .
1 St. Petersburg paradox: g(x) ≡ 2x ⇒ E[g(X)] = ∞ if p = 1/2
2 E[g(X)] ̸= g(E[X]) in general: E[X] = 2

Lemma: Let X be a discrete r.v. whose support is the
non-negative integers. Then, E[X] =∑∞

x=1 P(X ≥ x)

Product of independent r.v.s: Let Xi, i = 1, . . . ,n are independent.
Then, E[∏n

i=1 Xn] =
∏n

i=1 E[Xi]
Xi i.i.d.∼ Bern(p) ⇒ P(X1 = 1, . . . ,Xn = 1) = pn
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Inequalities of Expectation

If X1 ≤ X2 with probability 1, i.e., X1(ω) ≤ X2(ω) for all ω ∈ Ω,
then E[X1] ≤ E[X2]

If a ≤ X ≤ b with probability 1, i.e., a ≤ X(ω) ≤ b for all ω ∈ Ω,
then a ≤ E[X] ≤ b

Jensen’s inequality: Let g : R → R be a concave (convex)
function. Then, for a random vector X, E[g(X)] ≤ (≥)g(E[X])
Concave function: A function g : Rn → R is concave if and only if
for every α ∈ (0,1),

g
(
αx+ (1− α)y

)
≥ αg(x) + (1− α)g(y)

for any x, y ∈ Rn

Logarithm is common in statistics: E[log(X)] < log
(
E[X]

)
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Moments and Variance

Moments of an r.v.: For an r.v. X and a positive integer k, E[Xk] is
called the kthmoment of X
Existence of moments: If E[Xk] exists, E[Xl] exists for any l < k
Central moments: E[(X− E[X])k] is called the kth central moment
or the kthmoment of X about the mean
If the kth moment exists, the lth central moment exists for l ≤ k

Variance: The second centeral moment of X is called the
variance of X, denoted by V(X) ≡ E[(X− E[X])2]
Variance and moments: V(X) = E[X2]− (E[X])2
V(X) ≥ 0, with equality if and only if P(X = c) = 1 for some c
Y = aX+ b ⇒ V(Y) = a2V(X)
Variance of Bern(p): E[X2]− (E[X])2 = p− p2 = p(1− p)
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Covariance
Covariance: For r.v.s X1 and X2, the covariance of X1 and X2,
denoted by Cov(X1,X2), is defined as:

Cov(X1,X2) ≡ E[(X1 − E[X1])(X2 − E[X2])]
Analogously to the variance, Cov(X1,X2) = E[X1X2]− E[X1]E[X2]
Correlation: The correlation of X1 and X2, denoted by ρ(X1,X2),
is defined as:

ρ(X1,X2) ≡
Cov(X1,X2)√
V(X1)V(X2)

ρ(X1,X2) = Cov
(
(X1 − E[X1])/

√
V(X1), (X2 − E[X2])/

√
V(X2)

)
Covariance depends on the scale of r.v.s, but |ρ(X1,X2)| ≤ 1
X1 and X2 are uncorrelated if and only if Cov(X1,X2) = 0
X1 and X2 are independent⇒ X1 and X2 are uncorrelated
The converse does not necessarily hold:

U ∼ Unif(0,1), X1 = cos2πU and X2 = sin2πU
Clearly, X1 and X2 are not independent, but Cov(X1,X2) = 0

Covariance and correlation indicate linear relationship b/w r.v.s
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Variance-Covariance Matrix
Trivially, V(X) = E[(X− E[X])(X− E[X])] = Cov(X,X)
Variance-covariance Matrix: For r.v.s X1, . . . ,Xn, we define the
(variance-)covariance matrix, denoted by V(X) or ΣX, as

ΣX ≡


V(X1) Cov(X1,X2) · · · Cov(X1,Xn)

Cov(X2,X1) V(X2) · · · Cov(X2,Xn)
... ... . . . ...

Cov(Xn,X1) Cov(Xn,X2) · · · V(Xn)


In vector notation, ΣX = E[(X− E[X])(X− E[X])⊤]
ΣX is positive semi-definite
ΣX is positive definite unless some r.v.s are constant⇒ invertible

If X1, . . . ,Xn are i.i.d., ΣX is diagonal
V
(∑n

i=1 aiXi
)
=
∑n

i=1 a2i V(Xi) + 2∑i<j aiajCov(Xi,Xj)
Xis are uncorrelated, V

(∑n
i=1 Xi

)
=
∑n

i=1V(Xi)
If X1, . . . ,Xn are i.i.d., V

(∑n
i=1 Xi

)
= tr(ΣX)
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Conditional Expectation
Summarizing prediction of Y using X:

Given X = x, Y is predicted by its conditional distribution
Conditional expectation is used to summarize the prediction

Conditional expectation: The conditional expectation of Y given
X, denoted by E[Y | X], is the expectation of the conditional
distribution of Y given X
Conditional moments are defined with expectation replaced by
conditional expectation, e.g. V(Y | X) ≡ E[(Y− E[Y | X])2 | X]
Conditional expectation is an r.v.:

E[Y | X] is a function of X
E[Y | X] has a distribution defined by FX

Conditional expectation is expectation:
For any fixed x1, E[Y | X = x1] is expectation
All the properties of expectation hold for E[Y | X = x1]

Uniform-Binomial example:

E[X1 | X2] =
∫ 1

0
x1

xX21 (1− x1)n−X2

B(X2 + 1,n− X2 + 1)dx1 =
X2 + 1
n+ 2
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Properties of Conditional Expectation
Law of iterated expectations: Let X and Y be r.v.s. Then,

E [E[g(X, Y) | X]] = E[g(X, Y)]
for any function g.
Law of total variance: Let X and Y be r.v.s. Then,

E [V(Y | X)] + V (E[Y | X]) = V(Y)
Uniform-Binomial example:

E[X2] = E[nX1] =
n
2

V[X2] = E[nX1(1− X1)] + V(nX1) =
n
6 +

n2
12

Minimization of expected squared distance (regression):
Conditional expectation is the “best” predictor in the sense that

argmin
c

E
[
(Y− c)2 | X

]
= E[Y | X]

Proof.
E
[
(Y− c)2 | X

]
= E

[
(Y− E[Y | X])2 | X

]
+ (E[Y | X]− c)2︸ ︷︷ ︸

=0 iff c=E[Y|X]
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Standard Gaussian Distribution
X follows the standard multivariate Gaussian distribution:

Joint p.d.f.: For a vector of real numbers x ≡ x1 . . . , xK,

fX(x) =
1

(2π)K/2 e
− 1

2 x
⊤x =

K∏
k=1

1√
2π

e−
x2k
2

Denoted by: X ∼ N (0, IK)
X1, . . . ,XK are independent
K = 1: The standard Gaussian (Normal) distribution N (0,1)

Box-Muller Transfromation: Let U1 and U2 be independent
uniform r.v.s. Define

X1 =
√
−2 logU1 cos(2πU2),

X2 =
√

−2 logU1 sin(2πU2).

Then,
X ∼ N (0, I2)

Random number generator for the Gaussian distributions
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Change of Variables
BH, 8.1; DS, p. 172–3, 182–6
Change of variables: Let X be a continuous random vector of
length K and Y ≡ g(X) where g : RK → RK is one-to-one and
differentiable. Then, the p.d.f. of Y is

fY(y) = fX
(
g−1(y)

)
|det (J(y))|

where g−1 : RK → RK is the inverse function of g.

J(·) is the Jacobian (matrix) of g−1 defined as:

J(y) =


∂g−1

1
∂y1 (y) · · · ∂g−1

1
∂yK (y)

... . . . ...
∂g−1

K
∂y1 (y) · · · ∂g−1

K
∂yK (y)


where g−1

i (y) is the ith element of g−1(y).
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Univariate Change of Variables
Univariate change of variables: Let X be a continuous r.v. and
Y ≡ g(X) where g : R → R is one-to-one and differentiable. Then,
the p.d.f. of Y is

fY(y) = fX
(
g−1(y)

) ∣∣∣∣dg−1

dy (y)
∣∣∣∣

Proof.
1 If g(x) is one-to-one and differentiable, it is either strictly

increasing or decreasing.
2 First, we assume that it is strictly increasing. Then, the c.d.f. of Y is

FY(y) = P(Y ≤ y) = P(g(X) ≤ y) = P
(
X ≤ g−1(y)

)
= FX

(
g−1(y)

)
3 So the p.d.f. of Y is

fY(y) =
d
dyFY(y) =

d
dyFX

(
g−1(y)

)
= fX

(
g−1(y)

) dg−1

dy (y) (∵ chain rule)
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Proof, cont.
4 Because g is strictly increasing, we have dg−1

dy (y) > 0 so that
dg−1

dy (y) =
∣∣∣dg−1

dy (y)
∣∣∣.

5 Second, we consider the case in which g is strictly decreasing.
Then, the c.d.f. of Y is

FY(y) = P(Y ≤ y) = P(g(X) ≤ y) = P
(
X ≥ g−1(y)

)
= 1− P

(
X ≤ g−1(y)

)
= 1− FX

(
g−1(y)

)
Note that the inequality is flipped because g is strictly decreasing.

6 So the p.d.f. of Y is

fY(y) =
d
dyFY(y) =

d
dy
(
1− FX

(
g−1(y)

))
= −fX

(
g−1(y)

) dg−1

dy (y) = fX
(
g−1(y)

)(
−dg−1

dy (y)
)

7 Because g is strictly decreasing, we have dg−1

dy (y) < 0 so that
−dg−1

dy (y) =
∣∣∣dg−1

dy (y)
∣∣∣.
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Box-Muller Transformation
Inverse of the Box-Muller transformation:

X1 =
√

−2 logU1 cos(2πU2)
X2 =

√
−2 logU1 sin(2πU2)

⇔
U1 = e−(X21+X22)/2

U2 = 1
2π arctan

(
X2
X1

)
The determinant of the Jacobian is:

det
(
J(X)

)
= det

(
∂U1
∂X1

∂U1
∂X2

∂U2
∂X1

∂U2
∂X2

)

= det

 −X1e−(X21+X22)/2 −X2e−(X21+X22)/2
−X2/X21

2π(1+(X2/X1)2)
1/X1

2π(1+(X2/X1)2)


=

−1− X2
2/X2

1
2π
(
1+ (X2/X1)2

)e−(X21+X22)/2

= − 1√
2π

e−X21/2 × 1√
2π

e−X22/2
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Linear Transformation of Gaussian
Linear transformation: Let X be a K-dimensional random vector.
A linear transformation of X is

Y = a+AX
whereA is a matrix with K columns
Multivariate Gaussian: Let X follow the standard multivariate
Gaussian distribution. Then, for a full rank K× KmatrixA and an
K dimensional vector μ, Y = μ+AX has a p.d.f.:

fY(y) =
1

(2π)K/2 det(Σ)1/2e
− 1

2 (y−μ)⊤Σ−1(y−μ)

where Σ = AA⊤

Proof.
X = A−1(Y − μ)
J = A−1

E[Y] = μ and V(Y) = Σ
Uncorrelated⇔ (pairwise) independent
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Conditional and Marginal of Gaussian

Let (X1,X2)⊤ ∼ N (μ,Σ). The joint p.d.f. is:

f(X1,X2)(x1, x2) =
e
− 1

2(1−ρ2)

{( x1−μ1
σ1

)2
−2ρ

( x1−μ1
σ1

)( x2−μ2
σ2

)
+
( x2−μ2

σ2

)2}
2πσ1σ2

√
1− ρ2

=
e
− 1

2(1−ρ2)σ22

(
x2−μ2−ρσ2

x1−μ1
σ1

)2

√
2πσ2

√
1− ρ2︸ ︷︷ ︸

fX2|X1 (x2|x1)

e−
1
2
( x1−μ1

σ1

)2

√
2πσ1︸ ︷︷ ︸
fX1 (x1)

X1 ∼ N
(
μ1,σ2

1
)
, X2 | X1 ∼ N

(
μ2 + ρσ2

σ1
(X1 − μ1), (1− ρ2)σ2

2
)

Both marginal and conditional distributions are Gaussian

Regression E[X2 | X1] = μ2 + ρσ2
σ1

(X1 − μ1) is linear in X1
⇝ linear regression
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Moment Generating Function
Moment generating function: Let X be an r.v. Themoment
generating function (m.g.f.) of X, denoted byMX(t), is defined as

MX(t) = E[etX]
if E[etX] exists for all t ∈ (−s, s) for some s > 0.

If m.g.f. is given, higher order moments can be easily computed:
dk
dtkMX(t)

∣∣∣∣∣
t=0

= E[Xke0X] = E[Xk], for k = 1,2, . . .

If X1, . . . ,Xn are independent, the m.g.f. of Y ≡
∑n

i=1 Xi is

MY(t) = E[et
∑n

i=1 Xi ] = E[
n∏
i=1

etXi ] =
n∏
i=1

E[etXi ] =
n∏
i=1

MXi(t)

M.g.f. uniquely determines the distribution: If r.v.s X1 and X2
have m.g.f.s andMX1(t) = MX2(t) for all t ∈ (−a, a) for some
a > 0, then c.d.f.s FX1(x) = FX2(x) for all x
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M.g.f. of Gamma Distributions
Square of a Gaussian r.v. follows a Gamma distribution
X follows a Gamma distribution:

P.d.f.:
fX(x) =

βα

Γ(α)x
α−1e−βx for x > 0

Parameters: Shape α > 0 and rate β > 0
Alternative parameterization: Shape α > 0 and scale θ = 1/β
Gamma function: Γ(α) =

∫∞
0 xα−1e−xdx

Denoted by: X ∼ Ga(α,β)
M.g.f. of the Gamma distribution:
E[etX] = βα

Γ(α)

∫ ∞

0
xα−1e−(β−t)xdx = βα

Γ(α)
Γ(α)

(β− t)α =

( β
β− t

)α

Expectation and variance: E[X] = α/β,V[X] = α/β2

Sum of independent Gamma r.v.s Xi ∼ Ga(αi,β), i = 1, . . . ,n:

M∑n
i=1 Xi(t) =

n∏
i=1

MXi(t) =
n∏
i=1

( β
β− t

)αi
=

( β
β− t

)∑n
i=1 αi

⇒
∑n

i=1 Xi ∼ Ga(∑n
i=1 αi,β)
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Sample Moments
Let X1, . . . ,Xn is a random sample from a distribution FX
In other words, X1, . . . ,Xn are data
Sample moments: Let X1, . . . ,Xn be i.i.d. r.v.s. The kth sample
moment, denoted byMk, is defined as

Mk ≡
1
n

n∑
i=1

Xki
Why this is important: We never observe FX, hence neither E[Xk]
We useMk as an estimator—a function of r.v.s, therefore r.v.
Mean and variance ofMk for any FX:

E[Mk] = E[Xk], V(Mk) =
V(Xk)
n

In particular, for sample mean X ≡
∑n

i=1 Xi/n,
E[X] = E[X], V(X) = V(X)

n
If we specify FX, we can derive the distribution ofMk
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Sample Mean of Gaussian R.v.
We want to find the distribution of the sum of independent r.v.s
⇝ use m.g.f.!
M.g.f. of the Gaussian distribution N (μ,σ2):

E[etX] =
∫ ∞

−∞

1√
2πσ

e−
1

2σ2 (x−μ)2+txdx

=

∫ ∞

−∞

1√
2πσ

e−
1

2σ2 {x−(μ+σ2t)}2
+μt+ 1

2σ2t2dx

= eμt+ 1
2σ2t2

∫ ∞

−∞

1√
2πσ

e−
1

2σ2 {x−(μ+σ2t)}2
dx = eμt+ 1

2σ2t2

M.g.f. of the sample mean:

E[etX] =
n∏
i=1

E[e t
nX] = en

{
μ t
n+

1
2σ2( t

n)
2}

= e
μt+ 1

2

(
σ2
n

)
t2

⇒ X ∼ N
(
μ, σ2

n
)
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