Potential Outcomes and Causal Estimands

Yuki Shiraito

POLSCI 699 Statistical Methods in Political Research II University of Michigan

Counterfactuals

- "Correlation does not imply causation"-but what is causation?
- One (not the only one) conceptualization of causation: counterfactuals
 - "What would have happened if..."
 - "What would have been the US presidential election outcome if the Democratic Party had nominated Bernie Sanders instead of Hillary Clinton?"
 - "What would have been Saudi Arabia's political regime if oil had not existed?"
 - "What would have happend to the Russo-Ukranian conflict in 2022 if Ukraine had joined NATO?"
- Specific to:
 - 1 unit
 - 2 counterfactual scenario
- Fundamental problem of causal inference
 - Impossible to observe the outcome that did not happen

Formalization: Potential Outcomes

- Voter turnout with/without a get-out-the-vote (GOTV) message
- Units (= voters): *i* = 1, ..., *n*
- "Treatment": $T_i = 1$ if treated, $T_i = 0$ otherwise
- Observed outcome: Y_i
- Pre-treatment covariates: X_i
- Potential outcomes: $Y_i(1)$ and $Y_i(0)$ where $Y_i = Y_i(T_i)$

-	Voters	Contact	Turnout		Age	Party ID
	i	Ti	$Y_{i}(1)$	$Y_{i}(0)$	$\tilde{X_i}$	X _i
	1	1	1	?	20	D
	2	0	?	0	55	R
	3	0	?	1	40	R
	÷	:	:	÷	÷	÷
	n	1	0	?	62	D

• (Individual) Causal effect: $Y_i(1) - Y_i(0)$

Yuki Shiraito

Key Assumptions

- The notation $Y_i(t)$ implies three assumptions:
 - **1** No simultaneity (different from endogeneity): $T_i = T_i(Y_i)$ for any Y_i
 - **2** No interference between units: $Y_i(T_1, T_2, ..., T_n) = Y_i(T_i)$
 - Same version of the treatment: $Y_i(T_i) = Y_i(t)$ whenever $T_i = t$
- Stable Unit Treatment Value Assumption (SUTVA)
- Examples of SUTVA violations:
 - feedback effects
 - spill-over effects, carry-over effects
 - I different treatment administration
- Multi-valued treatment: more potential outcomes for each unit
- Randomness in statistical causal inference
 - Potential outcome for each unit (*Y_i*(0), *Y_i*(1)) is "fixed"; data cannot distinguish fixed and random potential outcomes
 - Observed outcome for each unit $Y_i = Y_i(T_i)$ is random because the treatment is random
 - Potential outcomes across units have a joint distribution of (Y_i(0), Y_i(1)): randomness from sampling

Manipulation of the Treatment

- "No causation without manipulation" (Holland, 1986)
- Medical trials: technically feasible to manipulate dosage, vaccination, etc.
- Social science: infeasible to manipulate immutable characteristics such as gender, race, age, etc.
- What does the causal effect of gender mean?
- Causal effect of having a female politician on policy outcomes (Chattopadhyay and Duflo, 2004 *QJE*)
- Causal effect of having a discussion leader with certain preferences on deliberation outcomes (Humphreys *et al.* 2006 *WP*)
- Causal effect of a job applicant's gender/race on call-back rates (Bertrand and Mullainathan, 2004 *AER*)
- Problem: confounding

Common Causal Estimands

- Individual effects are never observed ~→ average effects of the common treatment across units
- Sample Average Treatment Effect:

SATE
$$\equiv \frac{1}{n} \sum_{i=1}^{n} \{Y_i(1) - Y_i(0)\}$$

- Sample average of individual causal effects
- Still unobservable due to missing data of potential outcomes
- Population Average Treatment Effect:

$$\mathsf{PATE} \equiv \mathbb{E}\big[Y_i(1) - Y_i(0)\big]$$

- Population average of individual causal effects
- Unobservable due to both missingness and sampling
- Population Average Treatment Effect for the Treated:

$$\mathsf{PATT} \equiv \mathbb{E}\big[Y_i(1) - Y_i(0) \mid T_i = 1\big]$$

- Conditional population average given treated
- Often used policy evaluation

Assumptions

Problems

• Causal identification-how to unbiasedly or consistently estimate:

$$\frac{1}{n} \sum_{i=1}^{n} Y_i(t) \text{ for } i \text{ s.t. } T_i \neq t$$
$$\mathbb{E}[Y_i(t)] \text{ for all } t$$
$$\mathbb{E}[Y_i(0) \mid T_i = 1]$$

- Equivalent to predicting missing outcome data
- Finding identifiable estimand (e.g., principal effects)
- Treatment effect heterogeneity: Y_i(1) - Y_i(0) = 0 ∀i ⇒ ATE = 0 ATE = 0 ⇒ Y_i(1) - Y_i(0) = 0 ∀i
 Conditional average treatment effect: E[Y_i(1) - Y_i(0) | X] = E[Y_i(1) | X] - E[Y_i(0) | X]