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Probability Countable Counting Uncountable Independence Conditioning Bayes

Example: Survey in Nigeria
Interviewer says to a respondent:
For this question, I want you to answer yes or no. But I want you to
consider the number of your dice throw. If 1 shows on the dice, tell
me no. If 6 shows, tell me yes. But if another number, like 2 or 3 or 4
or 5 shows, tell me your own opinion about the question that I will ask
you after you throw the dice. [TURN AWAY FROM THE RESPONDENT]
Now you throw the dice so that I cannot see what comes out. Please
do not forget the number that comes out. [ WAIT TO TURN AROUND
UNTIL RES- PONDENT SAYS YES TO: ] Have you thrown the dice?
Have you picked it up?
Now, during the height of the conflict in 2007 and 2008, did you know
any militants, like a family member, a friend, or someone you talked to
on a regular basis. Please, before you answer, take note of the
number you rolled on the dice.

(Blair, Imai, and Zhou 2015)
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Outcomes and Events in the Example

Outcomes
1 Respondent’s true answer is yes, and 1 shows
2 Respondent’s true answer is yes, and 2 shows
3 Respondent’s true answer is yes, and 3 shows
4 Respondent’s true answer is yes, and 4 shows
5 Respondent’s true answer is yes, and 5 shows
6 Respondent’s true answer is yes, and 6 shows
7 Respondent’s true answer is no, and 1 shows
8 Respondent’s true answer is no, and 2 shows
9 Respondent’s true answer is no, and 3 shows
10 Respondent’s true answer is no, and 4 shows
11 Respondent’s true answer is no, and 5 shows
12 Respondent’s true answer is no, and 6 shows

Events
1 Respondent answers “yes”
2 Respondent answers “no”
3 Respondent answers “yes” or “no”
4 Null
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Generalization: Axiomatic Approach
Probability Space (Ω,F ,P):

1 Sample space, Ω: A non-empty set
2 Set of events, F : A set of subsets of Ω such that

Ω ∈ F
A ∈ F ⇒ Ac ∈ F
Ai ∈ F for i = 1,2, · · · ⇒ ∪∞

i=1Ai ∈ F
3 A probability measure, P: A function such that

P : F → [0,1]
P(Ω) = 1
Ai ∈ F for i = 1,2, . . . and Ai ∩ Aj = ∅ for any i ̸= j
⇒ P(∪∞

i=1Ai) =
∑∞

i=1 P(Ai)

The set of the events in the previous slide satisfies Condition 2
Proof in the next slide

P has to satisfy P( “yes” ) = p and P( “no” ) = 1− p, where
0 ≤ p ≤ 1.
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Proof

Ω ∈ F
Event “Respondent answers ‘yes’ or ‘no”’

A ∈ F ⇒ Ac ∈ F
1 (Respondent answers “yes”) and (Respondent answers “no”)
2 (Respondent answers “yes” or “no”) and Null

Ai ∈ F for i = 1,2, · · · ⇒ ∪∞
i=1Ai ∈ F

1 Union of (Respondent answers “yes”) and any others:
1 (Respondent answers “no”)⇒ (Respondent answers “yes” or “no”)
2 NULL⇒ (Respondent answers “yes”)
3 (Respondent answers “yes” or “no”)⇒ (Respondent answers “yes”

or “no”)
...
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Important Properties

Set of events:
1 If A1,A2 ∈ F then A1 ∩ A2 ∈ F and A1 \ A2 ≡ A1 ∩ Ac

2 ∈ F
Proof:

1 The fact that A1,A2 ∈ F implies that Ac
1,Ac

2 ∈ F .
2 Define Ai = Ω for i ≥ 3. Then, ∪∞

i=1Ac
i = Ac

1 ∪ Ac
2 and so Ac

1 ∪ Ac
2 ∈ F .

3 Therefore, (Ac
1 ∪ Ac

2)
c = A1 ∩ A2 ∈ F .

4 The same proof applies to A1 ∩ Ac
2 because Ac

2 ∈ F .

Probability: Let A1,A2 ∈ F . Then,
1 P(Ac

1) = 1− P(A1)
2 A1 ⊂ A2 ⇒ P(A1) ≤ P(A2)
3 P(A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2)

Proofs: Left to Fabricio’s section and problem sets
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Modeling the Survey using Probability
The set of events describing the survey response—useful?
No: we want to know the respondent’s true answer

Need to modify the model:
Include “Respondent’s true answer is yes” in the set of events
Expand the set of events so it satisfies the condition

Events
1 Respondent answers “yes”
2 Respondent answers “no”
3 Respondent answers “yes” or “no”
4 Null
5 Respondent’s true answer is yes
6 Respondent’s true answer is no
7 Union of event 1 and 5
8 Union of event 1 and 6
9 Union of event 2 and 5
10 Union of event 2 and 6
11 doesn’t stop here...
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Countable Sample Spaces
The “size” of a sample space may be:

1 Countable: Discrete outcomes
1 Finite: One-to-one correspondence to {1,2, . . . ,n} for some n
2 Infinite: One-to-one correspondence to {1,2, . . . }

2 Uncountable: Continuum of outcomes
1 Always infinite

For a countable space Ω, we can have:
F = 2Ω: The set of events is the power set of Ω
p : Ω → [0,1] such that∑ω∈Ω p(ω) = 1: Probability mass function
For any A ⊂ F , P(A) = ∑

ω∈A p(ω)

Intuitive case—e.g.:
Assume all outcomes in the Nigeria survey example have
probability mass 1/12
You can calculate the probability of any event
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Example: Court
9 justices vote on a case:

1 Roberts
2 Thomas
3 Breyer
4 Alito
5 Sotomayor
6 Kagan
7 Gorsuch
8 Kavanaugh
9 Barret

Question: What is the probability of the plaintiff winning?
Steps:

1 How many possible outcomes are there?
2 What are the events where the plaintiff wins?
3 How many outcomes are in those events?
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Number of Outcomes and Events

Assuming no abstentions, how many outcomes are there?
Multiplication Rule: Multiples of # of choices
Two choices for each of 9 Justices: 29 = 512
Example of sampling with replacement: any choice is not
precluded by others’ choices
What if only Justice Roberts abstains?

Events where the plaintiff wins:
5 justices vote for the plaintiff
6 justices vote for the plaintiff
7 justices vote for the plaintiff
8 justices vote for the plaintiff
9 justices vote for the plaintiff
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Permutations
How many outcomes in each of the events?
Which justices vote for the plaintiff?
Sampling without replacement:

Choices are precluded after they are chosen
Once you choose Justice Roberts, you cannot choose him again
9× 8× 7× 6× 5 = 15120 ways to sample 5 out of 9 justices
More generally, n(n− 1)(n− 2) . . . (n− k+ 1) ways to sample k out
of n objects

Overcounting:
1 Roberts, Thomas, Barret, Breyer, Alito
2 Barret, Alito, Thomas, Breyer, Robers...

How many times we count the same set of justices?
Permutations:

Special case of sampling without replacement
Sample and exhaust all 5 justices: 5× 4× 3× 2× 1 = 5! = 120
More generally, k! ways to permute k objects
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Combinations and Binomial Theorem

Adjust overcounting: Combinations
number of ways to sample 5 justices without replacement

number of ways to permute 5 justices

=
9× 8× 7× 6× 5

5!

General formula: Binomial coefficient(n
k

)
≡ n(n− 1)(n− 2) . . . (n− k+ 1)

k! =
n!

(n− k)!k!

Application: Binomial theorem

(x+ y)n =

n∑
k=0

(n
k

)
xky(n−k)
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Example: Survey in Nigeria, Modified

The interviewer gives the respondent a stick, instead of a dice, and
says:
For this question, I want you to answer yes or no. But I want you to
consider in which direction your stick falls. Once I turn away from you,
please put your stick upright on the ground and then take your hands
off. If the stick falls in between the true north and azimuth 60 degrees,
tell me no. If the stick falls in between the true north and azimuth 300
degrees, tell me yes. Otherwise, tell me your own opinion about the
question that I will ask. [TURN AWAY FROM THE RESPONDENT] ...
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Uncountable Sample Spaces
Outcomes are continuum: Stick may fall in any direction
Outcomes:

1 Respondent’s true answer is yes, and the stick falls azimuth x degrees
2 Respondent’s true answer is no, and the stick falls azimuth x degrees

for x ∈ [0,360)
Substantively, the situation is exactly identical

Sample space: Ω = {yes,no} × [0,360)
Event

1 “Respondent answers ’yes”’:
A = ({yes,no} × [300,360)) ∪ ({yes} × [60,300))

Probability: P(A) = p where 0 ≤ p ≤ 1
Probability mass function cannot be consistent:

1 If any, p(ω) is constant for all ω with the same true answer
2 If p(ω) > 0 then∑

ω∈A p(ω) = ∞
3 If p(ω) = 0 then∑

ω∈A p(ω) = 0
Any {ω} where ω ∈ Ω is not included in F
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Rolling a Dice and the True Answer

Formalize the Nigeria survey with a dice roll example:
1 Sample space Ω contains 12 outcomes
2 Set of events F is the power set of Ω, 2Ω
3 Probability mass function is denoted by p(ωi) = pi where

true answer is yes and i shows on the dice for i = 1, . . . ,6
true answer is no and i− 6 shows on the dice for i = 7, . . . ,12

4 Dice is fair: p1 = · · · = p6 = pY and p7 = · · · = p12 = pN

Events
1 Respondent’s true answer is yes: G ≡ {ω1, . . . ,ω6}
2 1 shows on the dice: B1 ≡ {ω1,ω7}
3 More generally, k shows on the dice: Bk

Does the dice have any information about respondent’s true
answer?
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Independence of Events

Independence of two events: Two events A1 and A2 are
independent if and only if

P(A1 ∩ A2) = P(A1)P(A2).

G and Bk, k = 1, . . . ,6 are independent:
P(G ∩ Bk) = py
P(G)P(Bk) = 6py ×

1
6 = py

Independent events are “unrelated”
Can create artificially indenpendent events:

Ω is independent of any event
∅ is independent of any event
B2 ∪ B3 and B1 ∪ B3 ∪ B5 are independent
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Mutually Independent
What if there are more than two events?
Independence of more than two events: Events A1, . . . ,AK are
mutually independent if and only if for every subset Ai1 , . . . ,AiJ
of J of these events (J = 2, . . . ,K),

P(Ai1 ∩ · · · ∩ AiJ) = P(Ai1) . . .P(AiJ)

Are G,B2 ∪ B3, and B1 ∪ B3 ∪ B5 are independent?
1 G and B2 ∪ B3 are indepedent
2 G and B1 ∪ B3 ∪ B5 are independent
3 B2 ∪ B3 and B1 ∪ B3 ∪ B5 are independent
4 G,B2 ∪ B3, and B1 ∪ B3 ∪ B5:

P
(
G ∩ (B2 ∪ B3) ∩ (B1 ∪ B3 ∪ B5)

)
= p(ω3) = pY

P(G)P(B2 ∪ B3)P(B1 ∪ B3 ∪ B5) = 6pY ×
1
3 × 1

2 = pY

However, pairwise independence does not necessarily imply
mutual independence (Fabricio’s section)
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Conditioning

If you know an event has occurred, can you say anything about
the probability of another event?
= Given that the realized outcome is included in event A, what is
the probability that the realized outcome is also included in
event B?

Intuition:
You happen to know 1 shows on the dice
The outcome must be either ω1 or ω7
What is the probability of G?
If G is occurring, ω1 has to be the outcome
So, the probability should be:

p(ω1)
p(ω1) + p(ω7)
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Conditional Probability
Conditional probability: For event A2 with P(A2) > 0, the
conditional probability of event A1 given A2, denoted by
P(A1 | A2), is defined as:

P(A1 | A2) =
P(A1 ∩ A2)

P(A2)

P(G | B1) = P(G ∩ B1)/P(B1) = pY/(pY + pN)

Independence and conditional probability: If events A1 and A2
are independent and P(A2) > 0, then

P(A1) = P(A1 | A2)

G and B1 are independent:
P(G) = 6pY
P(G | B1) = pY/(pY + pN) = 6pY/6(pY + pN) = 6pY

Independence: Does not change your belief
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Probability Countable Counting Uncountable Independence Conditioning Bayes

Conditional Probability and Probability Axioms
Conditional probabilities are probabilities
For a fixed event A2, P(· | A2) satisfies the axioms of probability

For any A1, 0 ≤ P(A1 | A2).
Proof: 0 ≤ P(A1 ∩ A2) implies that P(A1∩A2)

P(A2)
= P(A1 | A2) ≥ 0.

P(Ω | A2) = 1.
Proof: P(Ω | A2) =

P(Ω∩A2)
P(A2)

= P(A2)
P(A2)

= 1.

Ãi ∈ F for i = 1,2, . . . and Ãi ∩ Ãj = ∅ for any i ̸= j
⇒ P(∪∞

i=1Ãi | A2) =
∑∞

i=1 P(Ãi | A2)
Proof:
P(∪∞

i=1Ãi | A2) =
P(∪∞

i=1Ãi∩A2)
P(A2)

=
∑∞

i=1 P(Ãi∩A2)
P(A2)

=
∑∞

i=1
P(Ãi ∩ A2)

P(A2)︸ ︷︷ ︸
P(Ãi|A2)

.
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Important Properties of Conditional Probability
For events A1 and A2, if P(A2) > 0 then

P(A1 ∩ A2) = P(A2)P(A1 | A2).

Law of total probability: Let A1, . . . ,AK be a partition of the
sample space Ω and P(Ak) > 0 for all k = 1, . . . ,K. Then, for any
event E,

P(E) =
K∑

k=1
P(Ak)P(E | Ak)

Nigeria survey example: Conditional on each number on the
dice,

P(G) = 6pY
6∑

k=1
P(Bk)P(G | Bk) =

6∑
k=1

1
6

pY
pY + pN

=
6pY

6(pY + pN)
= 6pY
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Independence and Conditional Independence

Conditional probabilities are probabilities
So, we can also think of conditional independence
Two events A1 and A2 are conditionally independent given A3
with P(A3) > 0 if and only if

P(A1 ∩ A2 | A3) = P(A1 | A3)P(A2 | A3)

Unconditional independence neither implies nor is implied by
conditional independence
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Bayes’ Rule
Model: True answer being yes is probability 6pY.
“Nature” (a.k.a. “data generating process”) knows pY
Data are generated according to:

P
(
True answer is ·,Dice shows ·

)
P
(
Response is “yes” | True answer is ·,Dice shows ·

)
Analysts don’t know pY: We want to estimate it from data
Question: Given an observed response, what is the probability
of the true answer?
Posterior (probability): P(True answer is · | Response is ·)

Bayes’ Rule: For events A1 and A2 with non-zero probability
measures,

P(A1 | A2) =
P(A2 | A1)P(A1)

P(A2)
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Bayes’ Theorem

Bayes’ rule + Law of total probability: Let Ã1, . . . , ÃK be a
partition of Ω with P(Ãk) > 0 and P(A2) > 0. Then

P(Ãk | A2) =
P(A2 | Ãk)P(Ãk)∑K

k′=1 P(A2 | Ãk′)P(Ãk′)

Use of Bayes’ theorem in statistics: Posterior of hidden truth
Posterior of truth can be computed from:

1 Conditional probability of data given truth =model
2 Marginal probability of truth = prior

Can compute what’s unknown from what’s known: Estimation
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Application to Nigeria Survey Example

Given that a response is “yes,” what is the posterior that the true
answer is yes?

P(Response is “yes” | True answer is yes) = 5
6

P(Response is “yes” | True answer is no) = 1
6

Prior belief: P(True answer is yes) = ρ
Applying Bayes’ theorem:

5
6ρ

5
6ρ+ 1

6(1− ρ) =
5ρ

1+ 4ρ

If ρ = 1
2 , then 5

6
What if ρ = 1

1000?
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Role of Prior and Data

Posterior may be sensitive to prior:
1 If ρ = 1

2 , posterior is 5
6

2 If ρ = 1
3 , posterior is 5

7
3 If ρ = 1

1000 , posterior is 5
1004

In extreme cases:
1 ρ = 0: Posterior is always 0
2 ρ = 1: Posterior is always 1

If you know truth a priori, you never update your belief

Prior determines how surprising data are:
1 Surprising⇒ bigger change in belief
2 Too surprising⇒ ignore data
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Multiple Responses
Remember: Conditional probabilities are probabilities
Conditional version of Bayes’ theorem:

P(Ãk | A2,A3) =
P(A2 | Ãk,A3)P(Ãk | A3)

P(A2 | A3)

=
P(A2 | Ãk,A3)P(Ãk | A3)∑K

k′=1 P(A2 | Ãk′ ,A3)P(Ãk′ | A3)

What if a respondent answers the question twice?
Posterior:

P(True answer is yes | Response 1 and 2 are “yes”)
= P(Response 2 is “yes” | True answer is yes)
× P(Response 1 is “yes” | True answer is yes)
× P(True answer is yes)

/
P(Response 1 and 2 are “yes”)
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Key Points
Probability spaces:

Distinction between outcomes and events:
1 One outcome realizes from one trial
2 Events are sets of outcomes

Probability is defined for events, not outcomes
Countable outcomes: Probability can be defined for outcomes

Counting:
Be aware of overcounting and adjust it

Independence and Conditional Probabilities:
Conditional probabilities are probabilities
Independence: Do not change your belief

Bayes:
Compute posterior using model and prior
Prior determines how informative data are
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