Identification and Inference for Randomized Experiments

Yuki Shiraito

POLSCI 699 Statistical Methods in Political Research II University of Michigan

Treatment Assignment and Observed Outcomes

- Observed outcomes $\{Y_i\}_{i=1}^n$ depends on treatment assignment
- Example with n = 200
 - Potential outcomes:
 - **1** $(Y_i(0), Y_i(1)) = (1, 1)$ for i = 1, ..., 100**2** $(Y_i(0), Y_i(1)) = (0, 0)$ for i = 101, ..., 200• If **1** $T_i = 1$ for i = 1, ..., 100**2** $T_i = 0$ for $i = 101, \dots, 200$ then • $Y_i = 1$ for the treated 2 $Y_i = 0$ for the control • If **1** $T_i = 0$ for i = 1, ..., 100**2** $T_i = 1$ for $i = 101, \ldots, 200$ then 1 $Y_i = 0$ for the treated 2 $Y_i = 1$ for the control
- "Correlation does not imply causation"

Completely Randomized Experiments

- Setup:
 - Random sample of size n from a superpopulation
 - 2 Binary treatment $T_i \in \{0, 1\}$
 - Pretreatment covariate vector X_i may be observed
- Randomized experiments:

$$p_i \equiv \mathbb{P}(T_i = 1) \in (0, 1)$$

- 2 Researcher sets p_i
- Assignment mechanism: joint distribution of the treatment, i.e., p(T | X, Y(0), Y(1)) where $T \equiv (T_1, T_2, ..., T_n)^{\top}$
- Complete randomization: with fixed n₁,

$$p(\mathsf{T} \mid \mathbf{X}, \mathsf{Y}(0), \mathsf{Y}(1)) = \begin{cases} \binom{n}{n_1}^{-1} & \text{if } \sum_{i=1}^{n} T_i = n \\ 0 & \text{otherwise} \end{cases}$$

Unconfounded: p(T | X, Y(0), Y(1)) = p(T | X) for any Y(0), Y(1)
Difference-in-means estimator:

$$\hat{\tau} \equiv \frac{1}{n_1} \sum_{i=1}^n T_i Y_i - \frac{1}{n_0} \sum_{i=1}^n (1 - T_i) Y_i$$
 where $n_0 = n - n_1$

Unbiased Estimation of SATE

- Key idea (Neyman 1923): Randomness comes from treatment assignment (plus sampling for PATE) alone
- Design-based (randomization-based) rather than model-based
- Statistical properties of $\hat{\tau}$ based on design features
- Define $\mathcal{O} \equiv \{Y_i(0), Y_i(1)\}_{i=1}^n$
- $\bullet\,$ Within sample, randomness of T conditional on ${\cal O}\,$
- Unbiasedness (over repeated treatment assignments):

$$\mathbb{E}(\hat{\tau} \mid \mathcal{O}) = \frac{1}{n_1} \sum_{i=1}^n \mathbb{E}(T_i \mid \mathcal{O}) Y_i(1) - \frac{1}{n_0} \sum_{i=1}^n \{1 - \mathbb{E}(T_i \mid \mathcal{O})\} Y_i(0)$$
$$= \frac{1}{n} \sum_{i=1}^n (Y_i(1) - Y_i(0))$$
$$= \mathsf{SATE}$$

Randomization Inference for SATE

- Variance of $\hat{\tau}$: $\mathbb{V}(\hat{\tau} \mid \mathcal{O}) = \frac{1}{n} \left(\frac{n_0}{n_1} S_1^2 + \frac{n_1}{n_0} S_0^2 + 2S_{01} \right),$ where for t = 0, 1, $S_t^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i(t) - \overline{Y(t)})^2 \quad \text{sample variance of } Y_i(t)$ $S_{01} = \frac{1}{n-1} \sum_{i=1}^n (Y_i(0) - \overline{Y(0)})(Y_i(1) - \overline{Y(1)}) \quad \text{sample covariance}$
- Derivation: Adam's section
- S₀₁ is *not identifiable*: cannot be estimated even with infinite amount of data
- Therefore $\mathbb{V}(\hat{\tau} \mid \mathcal{O})$ is not identifiable

Details of Variance Derivation

• Let
$$Z_i = Y_i(1) + n_1 Y_i(0)/n_0$$
 and $D_i = nT_i/n_1 - 1$, and write

$$\mathbb{V}(\hat{\tau} \mid \mathcal{O}) = \frac{1}{n^2} \mathbb{E} \left\{ \left(\sum_{i=1}^n D_i Z_i \right)^2 \mid \mathcal{O} \right\}$$

SATE

Show

$$\mathbb{E}(D_i \mid \mathcal{O}) = 0, \quad \mathbb{E}(D_i^2 \mid \mathcal{O}) = \frac{n_0}{n_1}, \quad \mathbb{E}(D_i D_j \mid \mathcal{O}) = -\frac{n_0}{n_1(n-1)}$$

$$\mathbb{V}(\hat{\tau} \mid \mathcal{O}) = \frac{n_0}{n(n-1)n_1} \sum_{i=1}^n (Z_i - \overline{Z})^2$$

• Substitute the potential outcome expressions for Z_i

Sharp Bounds on the Variance

• Cauchy-Shwartz inequality: $S_{01}^2 \leq S_1^2 S_0^2 \implies -S_1 S_0 \leq S_{01} \leq S_1 S_0$ where $S_t = \sqrt{S_t^2}$

• Sharp bounds on $\mathbb{V}(\hat{\tau} \mid \mathcal{O})$: $\frac{n_0 n_1}{n} \left(\frac{S_1}{n_1} - \frac{S_0}{n_0}\right)^2 \le \mathbb{V}(\hat{\tau} \mid \mathcal{O}) \le \frac{n_0 n_1}{n} \left(\frac{S_1}{n_1} + \frac{S_0}{n_0}\right)^2$

• The upper bound when $\frac{S_{01}}{S_1S_0} = 1$

• The lower bound when $\frac{S_{01}}{S_1S_0} = -1$

• Under the constant additive unit causal effect assumption, i.e., $Y_i(1) - Y_i(0) = c$ for all *i*, $S_1^2 = S_0^2 = S_{01}$ and letting $S^2 \equiv S_1^2 = S_0^2 = S_{01}$, $\mathbb{V}(\hat{\tau} \mid \mathcal{O}) = \frac{S^2}{r_0} + \frac{S^2}{r_0}$

Estimation of the Sample Variance

- S_t is a function of $Y_i(t)$ of all *i*, hence unknown
- The usual variance estimator is conservative on average: $\mathbb{V}(\hat{\tau} \mid \mathcal{O}) \leq \frac{S_1^2}{n_1} + \frac{S_0^2}{n_0} = \mathbb{E}\left[\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_0^2}{n_0} \mid \mathcal{O}\right]$

where

$$\hat{\sigma}_t^2 \equiv \frac{1}{n_t - 1} \sum_{i=1}^n 1\{T_i = t\} (Y_i - \bar{Y}_t)^2$$

for *t* = 0, 1

• Unbiased variance estimator under the constant additive effect assumption:

$$\mathbb{V}(\hat{\tau} \mid \mathcal{O}) = \frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_0^2}{n_0} \text{ where } \mathbb{E}\left[\widehat{\mathbb{V}(\hat{\tau} \mid \mathcal{O})} \mid \mathcal{O}\right] = \mathbb{V}(\hat{\tau} \mid \mathcal{O})$$

Randomization Inference for PATE

- Randomness from sampling $\rightsquigarrow \mathcal{O}$ is r.v.
- Complete randomization implies strong ignorability: for all *i*, $(Y_i(0), Y_i(1)) \perp T_i$
- Unbiasedness (over repeated sampling and treatment assignment):

$$\mathbb{E}\big[\mathbb{E}[\hat{\tau} \mid \mathcal{O}]\big] = \mathbb{E}[\mathsf{SATE}] \\ = \mathbb{E}\big[Y_i(1) - Y_i(0)\big] = \mathsf{PATE}$$

• Variance:

U

$$\begin{split} \mathbb{V}(\hat{\tau}) &= \mathbb{V}(\mathbb{E}(\hat{\tau} \mid \mathcal{O})) + \mathbb{E}(\mathbb{V}(\hat{\tau} \mid \mathcal{O})) \\ &= \frac{\sigma_1^2}{n_1} + \frac{\sigma_0^2}{n_0} \\ \text{where } \sigma_t^2 &\equiv \mathbb{V}(Y_i(t)) \text{ for } t = 0, 1 \\ \text{Unbiased variance estimator:} \\ &\widehat{\mathbb{V}(\hat{\tau})} = \frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_0^2}{n_0} \text{ where } \mathbb{E}\left[\widehat{\mathbb{V}(\hat{\tau})}\right] = \mathbb{V}(\hat{\tau}) \end{split}$$

n

 n_1

Yuki Shiraito

Asymptotic Inference for PATE

- Hold $k = n_1/n$ constant
- Rewrite the difference-in-means estimator as

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\left(\frac{T_i Y_i(1)}{k} - \frac{(1-T_i) Y_i(0)}{1-k}\right)}_{\text{i.i.d. with mean PATE & variance } n\mathbb{V}(\hat{\tau})}$$

• Consistency:

$$\hat{\tau} \xrightarrow{p} \mathsf{PATE}$$

• Asymptotic normality via the Central Limit Theorem (CLT): $\frac{\hat{\tau} - \text{PATE}}{\sqrt{\sigma_1^2/n_1 + \sigma_0^2/n_0}} \xrightarrow{d} \mathcal{N}(0, 1)$

Two-Sample Test

- H_0 : PATE = τ_0 and H_1 : PATE $\neq \tau_0$
- Often $\tau_0 = 0$
- Difference-in-means estimator: $\hat{\tau}$
- Asymptotic reference distribution:

$$Z-\text{statistic} = \frac{\hat{\tau} - \tau_0}{\text{s.e.}} = \frac{\hat{\tau} - \tau_0}{\sqrt{\hat{\sigma}_1^2/n_1 + \hat{\sigma}_0^2/n_0}} \xrightarrow{d} \mathcal{N}(0, 1)$$

•
$$(1 - a) \times 100\%$$
 Confidence intervals:
 $[\hat{\tau} - \text{s.e.} \times z_{\alpha/2}, \ \hat{\tau} + \text{s.e.} \times z_{\alpha/2}]$

- Is Z_{obs} unusual under the null?
 - Reject the null when $|Z_{obs}| > z_{1-\alpha/2}$
 - Retain the null when $|Z_{obs}| \le z_{1-a/2}$

Error and Power of Hypothesis Test

• Two types of errors:

Reject H_0 Retain H_0 H_0 is trueType I errorCorrect H_0 is falseCorrectType II error

- Size (level) of test: probability of Type I error
- Hypothesis tests control the level
- They do not control the probability of Type II error
- Tradeoff between the two types of error
- Power of test: probability that a test rejects the null
- Typically, we want a most powerful test with the proper size

Power Analysis

- Null hypotheses are often uninteresting
- But, hypothesis testing may indicate the strength of evidence for or against your theory
- Power analysis: What sample size do I need in order to detect a certain departure from the null?
- Power = $1 \Pr(\text{Type II error})$
- Four steps:
 - Specify the null hypothesis and the significance level a
 - Choose a true value for the parameter of interest and derive the sampling distribution of test statistic
 - Calculate the probability of rejecting the null hypothesis under this sampling distribution
 - Find the smallest sample size such that this rejection probability equals a prespecified level

One-Sided Test Example

FIGURE 6.11: Calculation of *P*(Type II Error) for Testing H_0 : $\pi = 1/3$ against H_a : $\pi > 1/3$ at $\alpha = 0.05$ Level, when True Proportion is $\pi = 0.50$. A Type II error occurs if $\hat{\pi} < 0.405$, since then *P*-value >0.05 even though H_0 is false. Power Function ($\sigma_0^2 = \sigma_1^2 = 1$ and $n_1 = n_0$)

