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Complete Randomization SATE PATE Hypothesis Test

Treatment Assignment and Observed Outcomes
Observed outcomes {Yi}ni=1 depends on treatment assignment
Example with n = 200

Potential outcomes:
1 (Yi(0), Yi(1)) = (1,1) for i = 1, . . . ,100
2 (Yi(0), Yi(1)) = (0,0) for i = 101, . . . ,200

If
1 Ti = 1 for i = 1, . . . ,100
2 Ti = 0 for i = 101, . . . ,200

then
1 Yi = 1 for the treated
2 Yi = 0 for the control

If
1 Ti = 0 for i = 1, . . . ,100
2 Ti = 1 for i = 101, . . . ,200

then
1 Yi = 0 for the treated
2 Yi = 1 for the control

“Correlation does not imply causation”
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Complete Randomization SATE PATE Hypothesis Test

Completely Randomized Experiments
Setup:

1 Random sample of size n from a superpopulation
2 Binary treatment Ti ∈ {0,1}
3 Pretreatment covariate vector Xi may be observed

Randomized experiments:
1 pi ≡ P(Ti = 1) ∈ (0,1)
2 Researcher sets pi

Assignment mechanism: joint distribution of the treatment, i.e.,
p(T | X,Y(0),Y(1)) where T ≡ (T1, T2, . . . , Tn)⊤

Complete randomization: with fixed n1,

p(T | X,Y(0),Y(1)) =
{( n

n1
)−1 if ∑n

i=1 Ti = n1
0 otherwise

Unconfounded: p(T | X,Y(0),Y(1)) = p(T | X) for any Y(0),Y(1)
Difference-in-means estimator:

τ̂ ≡ 1
n1

n∑
i=1

TiYi −
1
n0

n∑
i=1

(1− Ti)Yi where n0 = n− n1
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Complete Randomization SATE PATE Hypothesis Test

Unbiased Estimation of SATE
Key idea (Neyman 1923): Randomness comes from treatment
assignment (plus sampling for PATE) alone
Design-based (randomization-based) rather than model-based
Statistical properties of τ̂ based on design features

Define O ≡ {Yi(0), Yi(1)}ni=1
Within sample, randomness of T conditional on O
Unbiasedness (over repeated treatment assignments):

E(τ̂ | O) =
1
n1

n∑
i=1

E(Ti | O)Yi(1)−
1
n0

n∑
i=1

{1− E(Ti | O)}Yi(0)

=
1
n

n∑
i=1

(Yi(1)− Yi(0))

=SATE
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Complete Randomization SATE PATE Hypothesis Test

Randomization Inference for SATE

Variance of τ̂:
V(τ̂ | O) =

1
n

(n0
n1

S21 +
n1
n0

S20 + 2S01
)
,

where for t = 0,1,
S2t =

1
n− 1

n∑
i=1

(Yi(t)− Y(t))2 sample variance of Yi(t)

S01 =
1

n− 1
n∑

i=1
(Yi(0)− Y(0))(Yi(1)− Y(1)) sample covariance

Derivation: Adam’s section

S01 is not identifiable: cannot be estimated even with infinite
amount of data
Therefore V(τ̂ | O) is not identifiable
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Complete Randomization SATE PATE Hypothesis Test

Details of Variance Derivation

1 Let Zi = Yi(1) + n1Yi(0)/n0 and Di = nTi/n1 − 1, and write

V(τ̂ | O) =
1
n2 E


( n∑

i=1
DiZi

)2 ∣∣∣∣ O


2 Show
E(Di | O) = 0, E(D2

i | O) =
n0
n1

, E(DiDj | O) = − n0
n1(n− 1)

3 Use the above to show,
V(τ̂ | O) =

n0
n(n− 1)n1

n∑
i=1

(Zi − Z)2

4 Substitute the potential outcome expressions for Zi
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Complete Randomization SATE PATE Hypothesis Test

Sharp Bounds on the Variance
Cauchy-Shwartz inequality:

S201 ≤ S21S20 =⇒ −S1S0 ≤ S01 ≤ S1S0 where St =
√
S2t

Sharp bounds on V(τ̂ | O):
n0n1
n

(S1
n1

− S0
n0

)2
≤ V(τ̂ | O) ≤ n0n1

n

(S1
n1

+
S0
n0

)2

The upper bound when S01
S1S0 = 1

The lower bound when S01
S1S0 = −1

Under the constant additive unit causal effect assumption, i.e.,
Yi(1)− Yi(0) = c for all i,

S21 = S20 = S01
and letting S2 ≡ S21 = S20 = S01,

V(τ̂ | O) =
S2
n1

+
S2
n0
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Complete Randomization SATE PATE Hypothesis Test

Estimation of the Sample Variance
St is a function of Yi(t) of all i, hence unknown

The usual variance estimator is conservative on average:

V(τ̂ | O) ≤
S21
n1

+
S20
n0

= E

[
σ̂2
1

n1
+

σ̂2
0

n0
| O

]
where

σ̂2
t ≡ 1

nt − 1
n∑

i=1
1{Ti = t}(Yi − Ȳt)2

for t = 0,1

Unbiased variance estimator under the constant additive effect
assumption:

̂V(τ̂ | O) =
σ̂2
1

n1
+

σ̂2
0

n0
where E

[
̂V(τ̂ | O) | O

]
= V(τ̂ | O)
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Complete Randomization SATE PATE Hypothesis Test

Randomization Inference for PATE
Randomness from sampling⇝ O is r.v.
Complete randomization implies strong ignorability: for all i,(

Yi(0), Yi(1)
)
⊥⊥ Ti

Unbiasedness (over repeated sampling and treatment
assignment):

E
[
E[τ̂ | O]

]
= E[SATE]
= E

[
Yi(1)− Yi(0)

]
= PATE

Variance:
V(τ̂) = V(E(τ̂ | O)) + E(V(τ̂ | O))

=
σ2
1

n1
+

σ2
0

n0
where σ2

t ≡ V(Yi(t)) for t = 0,1
Unbiased variance estimator:

V̂(τ̂) = σ̂2
1

n1
+

σ̂2
0

n0
where E

[
V̂(τ̂)

]
= V (τ̂)
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Complete Randomization SATE PATE Hypothesis Test

Asymptotic Inference for PATE

Hold k = n1/n constant
Rewrite the difference-in-means estimator as

τ̂ =
1
n

n∑
i=1

(TiYi(1)
k − (1− Ti)Yi(0)

1− k

)
︸ ︷︷ ︸

i.i.d. with mean PATE & variance nV(τ̂)

Consistency:
τ̂ p−→ PATE

Asymptotic normality via the Central Limit Theorem (CLT):
τ̂ − PATE√

σ2
1/n1 + σ2

0/n0
d−→ N (0,1)
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Complete Randomization SATE PATE Hypothesis Test

Two-Sample Test

H0 : PATE = τ0 and H1 : PATE ̸= τ0
Often τ0 = 0
Difference-in-means estimator: τ̂
Asymptotic reference distribution:

Z−statistic =
τ̂ − τ0
s.e.

=
τ̂ − τ0√

σ̂2
1/n1 + σ̂2

0/n0
d−→ N (0,1)

(1− α)× 100% Confidence intervals:
[τ̂ − s.e.× zα/2, τ̂ + s.e.× zα/2]

Is Zobs unusual under the null?
Reject the null when |Zobs| > z1−α/2
Retain the null when |Zobs| ≤ z1−α/2
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Complete Randomization SATE PATE Hypothesis Test

Error and Power of Hypothesis Test

Two types of errors:
Reject H0 Retain H0

H0 is true Type I error Correct
H0 is false Correct Type II error

Size (level) of test: probability of Type I error
Hypothesis tests control the level
They do not control the probability of Type II error

Tradeoff between the two types of error
Power of test: probability that a test rejects the null
Typically, we want a most powerful test with the proper size
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Complete Randomization SATE PATE Hypothesis Test

Power Analysis

Null hypotheses are often uninteresting
But, hypothesis testing may indicate the strength of evidence for
or against your theory
Power analysis: What sample size do I need in order to detect a
certain departure from the null?
Power = 1− Pr(Type II error)

Four steps:
1 Specify the null hypothesis and the significance level α
2 Choose a true value for the parameter of interest and derive the

sampling distribution of test statistic
3 Calculate the probability of rejecting the null hypothesis under

this sampling distribution
4 Find the smallest sample size such that this rejection probability

equals a prespecified level
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Complete Randomization SATE PATE Hypothesis Test

One-Sided Test Example

H0 : τ = π and H0 : τ > π
Reject H0 if τ̂ > π+ zα/2 ×

√
σ2
1/n1 + σ2

0/n0
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Complete Randomization SATE PATE Hypothesis Test

Power Function (σ2
0 = σ2

1 = 1 and n1 = n0)
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