Simple Linear Regression for Randomized Experiments

Yuki Shiraito

POLSCI 699 Statistical Methods in Political Research II University of Michigan

Simple Linear Regression Model

- Setup (same as before):
 - Units i = 1, ..., n; random sample from superpopulation
 - 2 Potential outcomes $(Y_i(0), Y_i(1))$
 - **3** Treatment $T_i \in \{0, 1\}$; completely random assignment
- Simple linear regression model:

$$Y_i = \alpha + \beta T_i + \varepsilon_i, \quad \mathbb{E}(\varepsilon_i) = 0$$

- Y_i: observed (not potential) outcome
- Parameters: intercept a, slope β
- ε_i : error term, disturbance, residual
 - $\mathbb{E}(\varepsilon_i) = 0$ is not really an assumption because we have α
- Ordinary least squares (OLS) estimator:

$$(\hat{a}_{OLS}, \hat{\beta}_{OLS}) = \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{n} (Y - a - bT_i)^2$$

Regression and Conditional Expectation

• Conditional expectation minimizes the mean squared error:

$$\mathbb{E}\left[Y_i \mid T_i\right] = \operatorname*{argmin}_{f(T_i)} \mathbb{E}\left[\left(Y_i - f(T_i)\right)^2\right]$$

• Linear predictor that minimizes the mean squared error:

$$(\alpha, \beta) \equiv \underset{a,b}{\operatorname{argmin}} \mathbb{E}\left[\left(Y_i - a - bT_i\right)^2\right]$$

- **2** $\mathbb{E}[Y_i \mid T_i] = \mathbb{E}[Y_i \mid T_i = 0] + ([Y_i \mid T_i = 1] \mathbb{E}[Y_i \mid T_i = 0])T_i$
- **3** Population regression parameter $\beta = [Y_i \mid T_i = 1] \mathbb{E}[Y_i \mid T_i = 0]$
- Population regression parameter β is PATE:

 - $(Y_i(1), Y_i(0)) \perp T_i \Longrightarrow \mathbb{E}[Y_i(1) \mid T_i = 1] \mathbb{E}[Y_i(0) \mid T_i = 0] = \mathbb{E}[Y_i(1)] \mathbb{E}[Y_i(0)] = \mathsf{PATE}$
- OLS estimator as sample analog

More Causal Interpretation

- Association: you can always regress Y_i on T_i and vice versa
- Causal model as structural equation model
- Linear model in terms of potential outcomes:

$$Y_i(t) = \alpha + \beta t + \varepsilon_i, \quad \mathbb{E}(\varepsilon_i) = 0$$

- No interference between units
- $a = \mathbb{E}(Y_i(0))$
- $\beta = Y_i(1) Y_i(0)$ for all $i \iff$ Constant additive unit causal effect
- A more general model with heterogeneous treatment effects:

$$Y_i(t) = \alpha + \beta_i t + \varepsilon_i = \alpha + \beta t + \underbrace{(\beta_i - \beta)t + \varepsilon_i}_{=\varepsilon_i(t)}$$

where $\mathbb{E}[\varepsilon_i] = 0$ and $\beta = \mathbb{E}[\beta_i] = \mathsf{PATE}$

- Relax the assumption of constant additive unit causal effect
- $\mathbb{E}[\varepsilon_i(t)] = 0$ for t = 0, 1
- $a = \mathbb{E}(Y_i(0))$ as before

Assumptions for Linear Regression

- Random assignment, $(Y_i(1), Y_i(0)) \perp T_i$ for all i, implies: $\mathbb{E}[Y_i(t) \mid T_i] = \mathbb{E}[Y_i(t)] \iff \mathbb{E}[\varepsilon_i(t) \mid T_i] = \mathbb{E}[\varepsilon_i(t)] = 0$
- **2** Random sampling of units, $(Y_i(1), Y_i(0)) \perp (Y_j(1), Y_j(0))$ for any (i,j) s.t. $i \neq j$, implies: $(\varepsilon_i(1), \varepsilon_i(0)) \perp (\varepsilon_i(1), \varepsilon_i(0))$ for any (i,j) s.t. $i \neq j$
- \implies Strict exogeneity: $\mathbb{E}[\varepsilon_i \mid T] = \mathbb{E}[\varepsilon_i] = 0$ where $T = (T_1, T_2, \dots, T_n)$
 - Orthogonality: $\mathbb{E}[\varepsilon_i T_j] = 0$ for any (i,j) (not limited to $i \neq j$)
 - **2** Zero correlation: $Cov(\varepsilon_i, T_i) = 0$ for any (i, j) (not limited to $i \neq j$)
 - Variance of potential outcomes:

$$\mathbb{V}\big(\varepsilon_i(t)\big) = \mathbb{V}\big(\varepsilon_i(t) \mid T_i\big) = \mathbb{V}\big(Y_i(t) \mid T_i\big) = \mathbb{V}\big(Y_i(t)\big) = \sigma_t^2 \text{ for } t = 0, 1$$

- $\sigma_0 = \sigma_1 = \sigma$ if constant additive unit causal effect
- $\varepsilon_i(t) = (\beta_i \beta)t + \varepsilon_i = \varepsilon_i$ if $\beta_i = \beta$ for all i
- \implies Homoskedasticity: $\mathbb{V}(\varepsilon_i \mid \mathsf{T}) = \mathbb{V}(\varepsilon_i) = \sigma^2$

Least Squares Estimation

• Model parameters for population regression

$$(\alpha, \beta) \equiv \underset{a,b}{\operatorname{argmin}} \mathbb{E}\left[\left(Y_i - a - bT_i\right)^2\right]$$

Minimization of the sum of squared residuals (SSR):

$$(\hat{a}_{OLS}, \hat{\beta}_{OLS}) = \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{n} (Y - a - bT_i)^2$$
$$= \underset{(a,b)}{\operatorname{argmin}} \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

- Predicted (fitted) value: $\hat{Y}_i = \hat{a}_{OLS} + \hat{\beta}_{OLS} T_i$
- Residual: $\hat{\varepsilon}_i = Y_i \hat{Y}_i = Y_i \hat{a}_{OLS} \hat{\beta}_{OLS} T_i$
- OLS estimator (Adam will derive in the section):

$$\hat{\beta}_{OLS} = \frac{\sum_{i=1}^{n} (Y_i - \overline{Y})(T_i - \overline{T})}{\sum_{i=1}^{n} (T_i - \overline{T})^2}$$

$$\hat{\alpha}_{OLS} = \overline{Y} - \hat{\beta}_{OLS} \overline{T}$$

Unbiasedness of OLS Estimator

- When T_i is binary, $\hat{\beta}_{OLS} = \text{Difference-in-Means estimator}$ (Adam's section)
- ullet So, $eta_{
 m OLS}$ is unbiased for PATE from the design-based perspective
- Is $\hat{\beta}_{OLS}$ unbiased for β , population regression parameter?
 - Yes if T_i is binary, because β is PATE
 - More generally yes, under strict exogeneity and linearlity
- Model-based estimation error:

$$\hat{\beta}_{OLS} - \beta = \frac{\sum_{i=1}^{n} (T_i - T) \varepsilon_i}{\sum_{i=1}^{n} (T_i - \overline{T})^2}$$

• Thus, the exogeneity assumption implies,

$$\mathbb{E}\left[\hat{\beta}_{\mathsf{OLS}}\right] - \beta = \mathbb{E}\left[\mathbb{E}\left[\hat{\beta}_{\mathsf{OLS}} - \beta \mid \mathsf{T}\right]\right] = 0$$

- Similarly, $\hat{a}_{\mathsf{OLS}} a = \overline{\varepsilon} \left(\hat{\beta}_{\mathsf{OLS}} \beta\right)\overline{T}$
- Thus, $\mathbb{E}\left[\hat{a}_{OLS}\right] a = 0$

Model-based Sampling Variance of OLS Estimator

• The homoskedasticity assumption implies

$$\mathbb{V}\left(\hat{\beta}_{\mathsf{OLS}} \mid \mathsf{T}\right) = \frac{\sigma^2}{\sum_{i=1}^{n} \left(T_i - \overline{T}\right)^2}$$

• Standard model-based (conditional) variance estimator for $\hat{\beta}$:

$$\mathbb{V}\left(\widehat{\hat{\beta}}_{OLS} \mid \mathsf{T}\right) = \frac{\hat{\sigma}^2}{\sum_{i=1}^{n} \left(T_i - \overline{T}\right)^2} \quad \text{where} \quad \hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

ullet (Conditionally) Unbiased: $\mathbb{E}\left[\hat{\sigma}^2 \mid \mathsf{T}\right] = \sigma^2$ implies

$$\mathbb{E}\left[\mathbb{V}\left(\widehat{\hat{\beta}_{\mathsf{OLS}}}\,|\,\mathsf{T}\right)\,|\,\mathsf{T}\right] = \mathbb{V}\left(\widehat{\beta}_{\mathsf{OLS}}\,|\,\mathsf{T}\right)$$

ullet (Unconditionally) Unbiased: $\mathbb{V}\left(\mathbb{E}\left[\hat{eta}_{\mathsf{OLS}}\mid\mathsf{T}\right]\right)=0$ implies

$$\mathbb{V}\left(\hat{\beta}_{\mathsf{OLS}}\right) = \mathbb{E}\left[\mathbb{V}\left(\hat{\beta}_{\mathsf{OLS}} \mid \mathsf{T}\right)\right] = \mathbb{E}\left[\mathbb{E}\left[\mathbb{V}\left(\hat{\beta}_{\mathsf{OLS}} \mid \mathsf{T}\right) \mid \mathsf{T}\right]\right]$$
$$= \mathbb{E}\left[\mathbb{V}\left(\hat{\beta}_{\mathsf{OLS}} \mid \mathsf{T}\right)\right]$$

Model-Based Asymptotic Inference

- Consistency: $\hat{\beta}_{OLS} \xrightarrow{p} \frac{Cov(T_i, Y_i)}{\mathbb{V}(T_i)} = \beta$ (c.f. Q3 of PS599 PSet 6)
- Asymptotic distribution and inference:

$$\sqrt{n}(\hat{\beta}_{OLS} - \beta) = \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} (T_i - \mathbb{E}[T_i]) \varepsilon_i + \left(\mathbb{E}[T_i] - \overline{T} \right) \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i \right) \\
\times \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} (T_i - \overline{T})^2 \right)^{-1}}_{\stackrel{\mathcal{D}}{\longrightarrow} \mathbb{V}(T_i)^{-1}} \\
\stackrel{d}{\longrightarrow} \mathcal{N} \left(0, \frac{\sigma^2}{\mathbb{V}(T_i)} \right) \\
\frac{\hat{\beta}_{OLS} - \beta}{\text{s.e.}} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1) \text{ where s.e.} = \sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^{n} (T_i - \overline{T})^2}}$$

Violation of Homoskedasticity

- The design-based perspective: use Neyman's exact variance
 - Not relying on constant additive unit causal effect
- Constant additive unit causal effect ⇒ homoskedasticity
- ullet Heterogeneous effects \Longrightarrow violation of homoskedasticity \Longrightarrow bias of model-based variance estimator
- Finite sample bias:

$$\begin{aligned} \text{Bias} &= \underbrace{\mathbb{E}\left(\frac{\hat{\sigma}^2}{\sum_{i=1}^n (T_i - \overline{T})^2}\right)}_{\text{expectation of variance estimator}} - \underbrace{\left(\frac{\sigma_1^2}{n_1} + \frac{\sigma_0^2}{n_0}\right)}_{\text{true variance}} \\ &= \frac{(n_1 - n_0)(n-1)}{n_1 n_0 (n-2)} (\sigma_1^2 - \sigma_0^2) \end{aligned}$$

- zero if homoskedasticity holds: $\sigma_1^2 \sigma_0^2 = 0$
- 2 zero if design is balanced: $n_1 n_0 = 0$
- not asymptotically zero
 - can be negative or positive

Eicker-Huber-White (EHW) Variance Estimator

- Heteroskedasticity-consistent (HC) variance estimators
 - also known as "robust" or "sandwich" estimators
 - implemented in sandwich package in R
- EHW (or simply "Huber-White") robust variance estimator:

$$\widehat{\mathbb{V}}_{(\mathsf{EHW})}\widehat{\left(\hat{\tilde{\beta}}_{\mathsf{OLS}} \mid \mathsf{T}\right)} \equiv \left(\sum_{i=1}^{n} \widetilde{\mathsf{T}}_{i} \widetilde{\mathsf{T}}_{i}^{\mathsf{T}}\right)^{-1} \left(\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} \widetilde{\mathsf{T}}_{i} \widetilde{\mathsf{T}}_{i}^{\mathsf{T}}\right) \left(\sum_{i=1}^{n} \widetilde{\mathsf{T}}_{i} \widetilde{\mathsf{T}}_{i}^{\mathsf{T}}\right)^{-1}$$
 where

$$\tilde{\beta} \equiv \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
 and $\tilde{\mathsf{T}}_i \equiv \begin{pmatrix} 1 \\ T_i \end{pmatrix}$

• Design-based evaluation:

$$\mathsf{Bias} = \mathbb{E}\left[\widehat{\mathbb{V}}_{(\mathsf{EHW})}\widehat{\left(\hat{\beta}_{\mathsf{OLS}} \mid \mathsf{T}\right)}\right] - \left(\frac{\sigma_1^2}{n_1} + \frac{\sigma_0^2}{n_0}\right) = -\left(\frac{\sigma_1^2}{n_1^2} + \frac{\sigma_0^2}{n_0^2}\right)$$

Negative bias, but vanishes asymptotically

HC2 Variance Estimator

where

$$\rho_{ii} = \widetilde{\mathsf{T}}_i^{\top} \left(\widetilde{\mathbf{T}}^{\top} \widetilde{\mathbf{T}} \right) \widetilde{\mathsf{T}}_i = \begin{cases} \frac{1}{n_1} & \text{if } T_i = 1\\ \frac{1}{n_0} & \text{if } T_i = 0 \end{cases}$$

- p_{ii} is the (i,i) element of the projection matrix (discussed later)
- Samii and Aronow (2012):

$$\mathbb{V}_{(HC2)}\widehat{\left(\hat{\beta}_{OLS}\mid \mathsf{T}\right)} = \frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_0^2}{n_0}$$

• HC2 estimator is identical Neyman's estimator

Cluster Randomized Experiments

- Units: $i = 1, 2, ..., n_i$
- Clusters of units: j = 1, 2, ..., m
- Treatment at cluster level: $T_i \in \{0, 1\}$
- Outcome: $Y_{ij} = Y_{ij} (T_j)$
- Random assignment: $(Y_{ij}(1), Y_{ij}(0)) \perp T_i$
- No interference between units of different clusters
- Possible interference between units of the same cluster
- Random sampling of clusters and units
- Estimands at unit level:

SATE
$$\equiv \frac{1}{\sum_{j=1}^{m} n_j} \sum_{j=1}^{m} \sum_{i=1}^{n_j} (Y_{ij}(1) - Y_{ij}(0))$$
PATE
$$\equiv \mathbb{E} [Y_{ij}(1) - Y_{ij}(0)]$$

Design-Based Inference

- For simplicity, assume the following:
 - equal cluster size, i.e., $n_i = n$ for all j
 - 2 we observe all units for a selected cluster (no sampling of units)
- The difference-in-means estimator:

$$\hat{\tau} \equiv \frac{1}{m_1} \sum_{j=1}^{m} T_j \overline{Y}_j - \frac{1}{m_0} \sum_{j=1}^{m} (1 - T_j) \overline{Y}_j$$

where
$$\overline{Y}_j \equiv \sum_{i=1}^n Y_{ij}/n$$

- Easy to show $\mathbb{E}(\hat{\tau} \mid \mathcal{O}) = \text{SATE}$ and thus $\mathbb{E}(\hat{\tau}) = \text{PATE}$
- Exact population variance:

$$\mathbb{V}(\hat{\tau}) = \frac{\mathbb{V}\left(\overline{Y_j(1)}\right)}{m_1} + \frac{\mathbb{V}\left(\overline{Y_j(0)}\right)}{m_0}$$

Intracluster Correlation Coefficient

• Comparison with the standard variance:

$$\mathbb{V}(\hat{\tau}) = \frac{\sigma_1^2}{m_1 n} + \frac{\sigma_0^2}{m_0 n}$$

• Correlation of potential outcomes across units within a cluster

$$\mathbb{V}\left(\overline{Y_{j}(t)}\right) = \mathbb{V}\left(\frac{1}{n}\sum_{i=1}^{n}Y_{ij}(t)\right)$$

$$= \frac{1}{n^{2}}\left\{\sum_{i=1}^{n}\mathbb{V}(Y_{ij}(t)) + \sum_{i\neq i'}\sum_{i'=1}^{n}\mathsf{Cov}(Y_{ij}(t),Y_{i'j}(t))\right\}$$

$$= \frac{\sigma_{t}^{2}}{n}\left\{1 + (n-1)\rho_{t}\right\} \stackrel{\text{typically}}{\geq} \frac{\sigma_{t}^{2}}{n}$$

Cluster Standard Error

where

$$\hat{\boldsymbol{\varepsilon}}_{j} = \begin{pmatrix} \hat{\boldsymbol{\varepsilon}}_{1j} \\ \vdots \\ \hat{\boldsymbol{\varepsilon}}_{nj} \end{pmatrix}$$
 and $\mathbf{T}_{j} = \begin{pmatrix} 1 & T_{1j} \\ \vdots & \vdots \\ 1 & T_{nj} \end{pmatrix}$

• Design-based evaluation:

$$\mathsf{Bias} = -\left(\frac{\mathbb{V}\left(\overline{Y_j(1)}\right)}{m_1^2} + \frac{\mathbb{V}\left(\overline{Y_j(0)}\right)}{m_0^2}\right)$$

- Bias vanishes asymptotically as $m \to \infty$ with n fixed
- Implication: cluster by the unit of treatment assignment