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Regression and Potential Outcomes

Simple Linear Regression Model

@ Setup (same as before):

@ Unitsi=1,...,n; random sample from superpopulation
@ Potential outcomes (Y;(0), Y;(1))
© Treatment T; € {0, 1}; completely random assignment

Simple linear regression model:
Y,':G-i-BT,'-f—S/, E(g)) =0

Y;: observed (not potential) outcome

Parameters: intercept a, slope 3
€;: error term, disturbance, residuat
e E(g;) = 0is not really an assumption because we have a

Ordinary least squares (OLS) estimator:

n
(GoLs: Bors) = argmin Y _ (Y —a — bT;)?

ab i
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Regression and Potential Outcomes

Regression and Conditional Expectation

e Conditional expectation minimizes the mean squared error:
; 2
E[Y; | Ti] = argmin E [(Y, —f(T)) }
f(T)

@ Linear predictor that minimizes the mean squared error:
(ovﬁ) = argminE |:(Yl —a— le)2:|
a,b

@ T.c{0,1} — E[Y,|T]iseither E[Y; | T, = 0] or E[Y; | T, = 1]
Q@ EN |TI=Ei[Ti=0+(Yi|Ti=1-E[Y;[T; = 0])T;
© Population regression parameter B=1[Y; | Ti=1]-E[Y; | Ti = 0]
e Population regression parameter 3 is PATE:
@ pB=[i|Ti=1-E[|T=0= [()IT—H EYi(0)|T; = 0]
Q@ (vi(1),Yi(0)) LT, — EYi(1)[Ti =1 -E[Y;(0) | Ti = 0] =
E[Yi(1)] —E[Yi(0)] = PATE

@ OLS estimator as sample analog
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Regression and Potential Outcomes

More Causal Interpretation

@ Association: you can always regress Y; on T; and vice versa
e Causal model as structural equation model

@ Linear model in terms of potential outcomes:
Yit) =a+pt+e, E(g) =0
e No interference between units
o a=E(Y,(0))
e B =Yi(1)—Yi(0) for all i <= Constant additive unit causal effect

@ A more general model with heterogeneous treatment effects:
Yit) =a+Bit+e=a+pt+ (B —B)t+s
=&(t)
where E[gj] = 0 and B = E[B;] = PATE
e Relax the assumption of constant additive unit causal effect
e E[gi(t)] =0fort=0,1
e a =E(Yi(0)) as before
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Regression and Potential Outcomes

Assumptions for Linear Regression

@ Random assignment, (Y;j(1),Y;(0)) L T; for all i, implies:
E[Yi(t) | )] =E[Yi(t)] <= E[&i(t) | T;] =El[ei(t)] =0
@ Random sampling of units, (Yi(1),Y;(0)) L (Y;(1),Y;(0)) for any
(i,j) s.t.i #j, implies:
(i(1),€1(0)) L (gi(1),€(0)) forany (i,j) s.t.i #j
— Strictexogeneity: E[g; | T| =E[g;] = Owhere T = (T1,Ty,...,T,)
@ Orthogonality: E[g;T;] = 0 for any (i, ) (not limited to i # j)
@ Zero correlation: Cov(g;, Tj) = 0 for any (i,j) (not limited to i # j)

© Variance of potential outcomes:
V(ei() =V(ei(t) | i) =V(Yi(t) | T;) = V(Yi(t)) = o2 fort=0,1
e 0o = 01 = o if constant additive unit causal effect
o gi(t)= (B, —B)t+ei=¢;if B, =L foralli
— Homoskedasticity: V(g | T) = V(g;) = o?
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Inference for OLS Estimator

Least Squares Estimation

@ Model parameters for population regression
(a,B) = argminE [(Y/ —a— bT,-)Z}
a,b

@ Minimization of the sum of squared residuals (SSR):
n

(Gots, BOLS) = argminz (Y—a-— bT,-)2

a i=1

n
= argmin Z &’

e Predicted (fitted) value: Y: = dors + ,BOLS
o Residual: & =Y, — Y Yi — doLs — BOLS
@ OLS estimator (Adam will derive in the section):

_ (=TT

Pos = =S 7 7y

dors =Y — BorsT
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Inference for OLS Estimator

Unbiasedness of OLS Estimator

e When T; is binary, By, s = Difference-in-Means estimator (Adam's
sectipn)

@ So, Bgs is unbiased for PATE from the design-based
perspective

Is BoLs unbiased for B, population regression parameter?
e Yes if T; is binary, because 3 is PATE
e More generally yes, under strict exogeneity and linearlity
@ Model-based estimation error: B
i (Ti— e

Bos—B = =
Y (Ti= Ty
Thus, the exogeneity assumption implies,

EBows| - B=E [E[Bos—BIT|| =0

Similarly, dors —a =€ — (BOLS — B) T
Thus, E [aOLs] —a=0
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Inference for OLS Estimator

Model-based Sampling Variance of OLS Estimator

e The homoskedasticity assumption implies

2
- o
v BOLS | T)= —
( ) Y (Ti=T) )
@ Standard model-based (conditional) variance estimator for B:
— <2
~ o} A2
V(Bos | T) = —————— where &2
(Bors ) S (T =T ”‘22

e (Conditionally) Unbiased: E [62 | T} = o2 implies

E[VO%:’ T) ’T] :V(BOLS|T>
@ (Unconditionally) Unbiased: V (]E [BOLS | TD = 0 implies

7 (Bous) :E[V(Bili T)|=E [E [V(B/O\le T) |T”
—E [V (Bos | T)}
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Inference for OLS Estimator

Model-Based Asymptotic Inference

e Consistency: BOLS SN C°%’,g’;_’)y") = B (c.f. Q3 of PS599 PSet 6)

e Asymptotic distribution and inference:

Vn(Bos — B) = vn (:72(7-: —E[T]) e+ (E[T]-T) :,Z&)
p p

LN (0,02V(T))
—1
1 n
/:1
Ly

LN (o, Vﬁ))

X 22
M i) N(0,1) where s.e. = 0—72
s.e. Zn:1 (Ti - T)
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Robust Variance Estimators

Violation of Homoskedasticity

@ The design-based perspective: use Neyman'’s exact variance
e Not relying on constant additive unit causal effect

e Constant additive unit causal effect = homoskedasticity

@ Heterogeneous effects = violation of homoskedasticity —-
bias of model-based variance estimator

@ Finite sample bias:

A2 2 2

o (o) (o)
Bias= E|———= — | 24+ 20
Y (Ti=T)? N1 nNo
expectation of variance estimator true variance

ni—ng)(n—1
_ ( 1 0)( )(O%—O%)
ning(n — 2)

zero if homoskedasticity holds: 02 — 02 = 0
zero if design is balanced: n1 —ng =0

not asymptotically zero

can be negative or positive
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Robust Variance Estimators

Eicker-Huber-White (EHW) Variance Estimator

@ Heteroskedasticity-consistent (HC) variance estimators
e also known as “robust” or “sandwich” estimators
e implemented in sandwich package in R

@ EHW (or simply "Huber-White") robust variance estimator:

—

n =1 n n
(EHW (BOLS | T) = (Z T,T,.T> <Z é,-ZT,T,-T) (Z T,-T,T>
i=1 i=1 i=1

where

—1

e Design-based evaluation:

— 2 2 2 2

A o o o o
Bias = E TV (22220 ) — (=22, 20
1as |:(EXN) (IBOLS | ):| (r” + no> <n% + n%

e Negative bias, but vanishes asymptotically

Yuki Shiraito Simple Linear Regression POLSCI 699 10715




Robust Variance Estimators

HC2 Variance Estimator

@ HC2 robust variance estimator: (H¥2) <BOL5 | T>

n -1 n éz n -1
_ (777 L ) (T

where
’l .

T (FRVF o LA =1

pi =T; <T T>T’_{n10 ifT, =0

e pjiis the (i,i) element of the projection matrix (discussed later)

@ Samii and Aronow (2012):
— ~2 ~2
A o1 | 9o
v (:BOLS \ T) T

(HC2)
e HC2 estimator is identical Neyman's estimator
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Cluster Randomized Experiments

Cluster Randomized Experiments

@ Units:i=1,2,...,n;

Clusters of units: j = 1,2,...,m

Treatment at cluster level: T; € {0, 1}

Outcome: Y = Y; (Tj)

Random assignment: (Y;;(1),Y;;(0)) L T;

No interference between units of different clusters
Possible interference between units of the same cluster

Random sampling of clusters and units

Estimands at unit level:

SATE = ZZ i Y;(0))

PATE

- E[Y,,<1>—Y,,<0>]
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Cluster Randomized Experiments

Design-Based Inference

e For simplicity, assume the following:

@ equal cluster size, i.e., nj = nforallj
@ we observe all units for a selected cluster (no sampling of units)

@ The difference-in-means estimator:
1T - 1 & -
> (1-TYY,

P T ,

m
T =1

where Y; =37 1 Yj/n
@ Easy to show E(7 | O) = SATE and thus E(7) = PATE

@ Exact population variance:
V(M) | v (50)

V(1) =
(7) m o
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Cluster Randomized Experiments

Intracluster Correlation Coefficient

e Comparison with the standard variance:

2 2
V() = -1 4 20

mqn mon

e Correlation of potential outcomes across units within a cluster

V(W) = V(li%j(ﬂ)
i=1

= V) + Y03 ConYy ), is(e)
i=1

i’ i'=1

2 typicall 2
O ypically o
= Z{+-p) = =

n
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Cluster Randomized Experiments

Cluster Standard Error

e Cluster robust variance estimator: 'V (EOLS | T)
(Cluster)
—1 —1
m m m
T TaaT T
=TT D TEE T (LT
j=1 j=1 j=1
where
E1j 1T Ty
g=|:]landT;=|:
Enj 1 Ty
@ Design-based evaluation:
V(M) v (%0)
Bias = — 5 + 5
m? mg

@ Bias vanishes asymptotically as m — oo with n fixed
e Implication: cluster by the unit of treatment assignment
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